M ASTER ENVIRONMENTAL LIBRARY
(MEL)

USER M ANUAL
FOR THE

GRIDDED BINARY (GRIB)
SOFTWARE

OCTOBER 15, 1998

DEFENSE M ODELING AND SIMULATION OFFICE
ALEXANDRIA , VA

MASTER ENVIRONMENTAL LIBRARY
(MEL)

USER M ANUAL
FOR THE
GRIDDED BINARY (GRIB)
SOFTWARE

VERSION1.0

OCTOBER 15, 1998

PREPAREDBY:
MAR, INC. SAIC
99 PaciFic ST., UITE 200E 550 G\MINO EL ESTERQ SUITE 205
MONTEREY, CA 93940 Monterey, CA 93940

GRIB USERM ANUAL

This page intentionally left blank

Version 1.0

10/15/98

GRIB USERM ANUAL

FOREWORD

The Department of Defense (DoD) Modeling and Simulation Master Plan (MSMP), DoD
5000.59-P, October 1995, assigned execution responsibility to Executive Agents and established
sub-objectives for providing authoritative representations of the four natural environment

domains (terrain, oceans, atmosphere, and space). Through separate letters, the Under Secretary
of Defense for Acquisition and Technology (USD(A&T)) designated the Defense Mapping

Agency (now part of the National Imagery and Mapping Agency), Department of the Air Force,

and Department of the Navy as Modeling and Simulation Executive Agents (MSEAS) for terrain,
atmosphere and space, and oceans, respectively.

The Master Environmental Library (MEL) project is part of the Modeling and Simulation (M&S)
community’s initiative to provide an authoritative representation of the natural environment.
The MEL Gridded Binary (GRIB) software is one of the supplementary tools that complement
the MEL project.

This document will be reviewed and updated by the MSEAs as required to maintain its currency.
Comments and recommendations should be forwarded for review and possible inclusion to:

Office of the Ocean Executive Agent
1800 N. Beauregard St.

Suite 300

Alexandria, VA 22311

(703) 575-2880

10/15/98 Version 1.0 i

GRIB USERM ANUAL

This page intentionally left blank

W

Version 1.0

10/15/98

GRIB USERM ANUAL

RECORD OF CHANGES

Change
Number

Date of
Change

Change Description

Date
Entered

Entered by

10/15/98

Version 1.0

GRIB USERM ANUAL

This page intentionally left blank

Vi

Version 1.0

10/15/98

GRIB USERM ANUAL

TABLE OF CONTENTS

FOREWORDttt e e e e et ettt e et e e e et e et s mnnmmmr et e e e e e ili
RECORD OF CHANGES ...ttt e e e ettt r e e et e e e et et aeenemmaeerre e eeees v
TABLE OF CONTENTS ...ttt ettt e e e et e e e et e e r e e et e b e e e e s mmnnn Vil....

SECTION L. SCOPE ... ettt e e et et e ——— 11t e e 1

1.1 IDENTIFICATION ...ttt ee ettt ettt et e e et e e ettt e e e e E e s e e e e e e e e e et e eenn e e e eeeeeeennnnnn 1
1.2 SYSTEM OVERVIEW. ...ttt ettt e e e e et e e e e bbb e s 1.
1.3 DOCUMENT OVERVIEW

SECTION 2. REFERENCED DOCUMENTSottt 3..

2.1 GOVERNMENT DOCUMENTSuiittitiii ettt ettt e et e et e e e et e e et e et ee e et e e st e s et e e eaaeeeannns 3
2 S = g o F= o £ 3
D A @ 1 [T gl 0 To Yot U 41T | 3

2.2 NON-GOVERNMENT DOCUMENTS. ..ottt e e et e e e et e e et e e et e e et e e st e e et e eeanieesrnens 3

SECTION 3. SOFTWARE SUMMARY ...ttt r s 5

3.1 SOFTWARE APPLICATION. . ..cttttttiititiis sttt e ettt e e e ettt et e aa e nr e e e e e e e e e e e snnnnaa s 5
3.2 SOFTWARE INVENTORY. ...ttt ettt e ettt e e r s e e e e et e e e e e e e e s r e e e e e e e e e e nnnnnnaaaas 5
3.3 SOFTWARE ENVIRONMENT......otttitiiiite ettt e e e et et e bbb e e e e e e e e e e e e s rrbb e e eeas 5
3.4 SOFTWARE ORGANIZATION AND OVERVIEW OF OPERATIQN
3.4.1 ENcoding A GRIB MESSAQEcceuuttuuniiiieeeeiiieieiiiities e e ettt e e e e e e eeeeenanees
3.4.2 DecodiNng A GRIB MESSAJEcuuuruuiiiiiieeei ettt e ettt e e e e e e eeeeeannees
3.5 CONTINGENCIES/ALTERNATE STATES AND MODES OF OPERATION.........cccoviiiiiiiiiiiiiiieee 9
3.6 SECURITY AND PRIVACY. ...ttt ettt ettt e e ettt e e e e et e e e e e e et e e e s e b b n e e e e eeees 9
3.6.1 US GOVEINMENT SYSTEM ...etiiiiiiiiiii ettt ettt e et e et r e e e et e e e e e eea e e emennmmmmeneennmeeee 9
3.6.2 LIMItS OF LIBDITILYeeeieeiiiieiiie ettt st 9
3.6.3 LimItS Of ENUOISEIMENT......cciiiiiiiiiiiiiiiie ettt e ettt e e e e e e s e 1 10
3.7 PROBLEM REPORTING AND RECOMMENDATIONS. ...ttt e e e e eeeees 10

SECTION 4. ACCESS TO THE SOFTWARE..... oottt 11

4.1 FIRST-TIME USER OF THE SOFTWARE..... oottt 11
4.1.1 Equipment Familiarization
A Ao o =13 @ o 1 |
4.1.3 Installation And Setup Of The MEL GRIB Software Library...........ccccceeeiineieeiiiiiiiiiiiiiienneeeeeen 1. 1

4.1.3.1 COPY the SOUICE COUEottt e e e et e e e e e e ettt e e e e e eesbe smmmmmnnmmmmm e e e eessn e eeeaes 11
4.1.3.2 Setting the GRIB ENVIFONMENT........coiiiiiiiiiiiiieiee et s eeer bbb 12
o I T I = 1T o [T g o g T= I o = Y/ O UUPUPPTUPPNE 13

4.2 INITIATING A SESSION. ...ttt et e et e et ettt e e e ettt e e e eebba e e aeeennaeaeeeesnnss 14

4.3 STOPPING AND SUSPENDING WORK. ...ttt ettt e e et eeeabbe e e e eaaa s 14

SECTION 5. PROCESSING REFERENCE GUIDE........ccuiiiiiiiiiiiiii e 15

LT R O AN A LI N |
LT R R == (U] =P
L0t I 0 I o = Y2 A OSSP
5.1.1.2 Additional Header INformation.............uiiuiiiiiiee e e o
LT R R T 4 (=T =TI = o] 1=
LT 2 I 101411 = 1 (0] PO

10/15/98 Version 1.0 Vil

GRIB USERM ANUAL

5.1.2.1 Grid Definition Section Limitation
5.1.2.2 Packing METhOUScevviiiiiiiiiiiiiiiii et
5.2 CONVENTIONS ..ottt e oo et e et ettt e oo e et bba e e e e etta s e e e e e tas seeaaeeemmnan s eeeeennns
5.3 LEARNING GRIB USINGGRIBSIMP ...ttt e e et e e e et e e e eaan s 17
5.3.1 OVENIEW OB RIBSIMP.........c.cc ittt ettt e e et s e e e et e e e e e et s e e e e e tt e e eaeaan s eeeeatannaenees 17
5.3.2 CommMaNd LiNE OPLIONS.......uuuuuuiiiieiee ittt e ettt e e e ettt e e aebbbb e e e eeeeeeneannnn s 18
5.3.3 EXaMPIES USINGRIBSIMP..........couuuiiiiiie et e e e ettt e e e e e e e eeeeeees 22
5.3.3.1 Example 1: Decoding YOUT firSt MESSAGEuuuuuuuiiiiiiaaiee e e e e e e e e e e e e e e e e e e et e e e e e e e ——— e 22
5.3.3.2 Example 2: Adding Indexing and Additional Printingccoooiiiiiiiiiiiiiiiiiii e o e« 22
5.3.3.3 Example 3: Controlling the decoding process
5.3.3.4 Example 4: Creating a GrADS data@ Set.........ccevvuuuiiiieiiiiiiiie e eeeeens
5.3.3.5 Example 5: A Second GrADS EXample..........coovviiiiiiiiiiiiiiiiiiiiiiiiiisseae s
5.3.3.6 Example 6: Creating @ ViS5D data SEl...........ccuviriiiiiiiiiiiiiiiiiiiiiiiisesss e s s 1111220002 30
5.4 DECODING EXAMPLE..... .ottt e e ettt e et ettt e e e e ebb e e e eeaba e e eaesaaaaaeee 30
B5.4.1 ProgramMUECOUEI _EX.C " ..ueeeiiii ettt ettt e e e 31
5.4.2 Programdetgribieee.c B PP PPPPPRT 37
5.5 GRIB ENCODING.ttt ettt ettt e e e ettt e e et e et e e e e eaba e e eessnaeeeeesnan e aaeennans
B5.5.1 INIFOTUCTION ... ettt e e e e e e e e et bbb eean
5.5.2 DEeSCIHDING DALA.......uuuuiiiiieeeiiieeeiiei e
5.5.3 ENCOAING EXAMPIES ...ttt e ettt e e e e e eeaa s
5.5.4 ENCOAING COUE EXAMPIES.uuuuiiiiieiii ittt e e e e e e e e ettt eeeeas 43
5.5.4.1 EXample 1ENCOUEI_EXL ..ottt e e et e e e e e e e e e e e e e ettt ettt ettt ettt e e e e e e annrrrarrne 43
5.5.4.2 EXAMPIE 2ENCOUET_BX2 iiiiiiiiiiiii ittt e et 4o e e e e e e e e e e e e e e et e e ettt ettt ettt et e et e nnnrrrarrne 47
5.5.4.3 EXAMPIE 3 BNCOUEBI _EX3 oottt a e e e e e e e e 50
5.6 GRIB TABLE MANAGEMENT. ...ttt ettt e e ettt e e e e et e e e e e tba e e e e esba e e eaeneans 58
5.6.1 EXternal Table FOIMAL........cooi ittt eeeenm e
5.6.1.1 The Decoder Table File
5.6.1.2 The Encoder Table File
5.7 FUNCTION DEFINITIONS. ... ittt ettt e e et e e ettt e e e e et s o 1
L %0 R i 7= oo Yo [T o LT od 1 o 1P
LS 0 0 A 1 11 o o] o [OO PPPPPPPRRRRRIN
0 B (=TT o 1] o] o | OO PPPPPPPRRRRRN
B.7. 0.3 INIE_AEC_SITUCT e a e e e e e e e aes
D7 0.4 INIE_BNC_SITUCT i e e e e e e e e e aaaes
I A B =T oo Lo 1o To TSP PO PUOUPPPPPPPIN
B.7.2.1 gD _ABC it
5.7.2.2 10_0EC_I00KUD ittt oo e e e e e et ettt ettt ettt ettt s
D 7. 2.3 O SBEK e e e e et t et e e e e e e e eeeeaees
RS B = ¢ (oo T [o EE OO PP PP UOUPPPPPTRIN
LS 75 o] o T =T o (o TP PP PP
5.7.3.2 10_EBNC_CONTIZ oooiiiiiiiiiiiii ettt e e e e e e e e ettt ettt ettt ettt e bbb s
I RC TR (o [=T (o (== OSSOSO PPPPPPPRRRRTN 73
B5.7.3.4 10_NC_ffINTO oo e e e e e e e et e ettt ettt rnnna 73..
B, 7. 3.5 10 BNC _GEOMIIlE e 74.......
AR N G I 01T T o I o = 0 S PP O TRRTT 74
L T 11 T« T PP PP P UPURURRTTRIPPPP 75
5.7.3.8 10_ENC_I00KUD oottt e e e e e e e e e e e e e e e e e et ettt et ettt e et et e n e rnnnns 76..
5.7.4 User ConveniENCE FUNCLIONSiiiiiiiiie e e e e e et e e e e e e e e e e e s s mm e 76
A 3 o] o]0 T | 7] OO PPPPPPPRRRRTRN 76
B.7.4.2 APPIY MBI oo e a et ettt e e aeaees 77
5.7.4.3 display _gribnar e e 78.......
L A 3 oo | o4 o | ST PPPPP PP PPRSPRRRRR 78
5.7.4.5 maKe _defaull_grofn oo e 79
5.7.4.6 MAKE_GriD_l00 oooiiiiiiiiiiiiii e e e e e e e ettt e et e e et et e et rnnna 79..
D747 PILUNP_SITUCE oottt e e e e e e e e e e e eaaeaas 8aQ....
L A S | 1| = ([PP P PP PP PR 81
B5.7.5 SITUCKIUIES ...ttt ettt et ettt e e et et r et e e e e see e s e e nmm e e e e e enrnaeeeees 81

Vvili Version 1.0 10/15/98

GRIB USERM ANUAL

5.7.5.1 ThAJSER_INPUTStructure (fromnpPULN) cooeiiiiiiiiieeeee ettt eenneees 81
5.7.5.2 ThReDATA_INPUTSIIUCIUrE IIPULIN). 83
5.7.5.3 THEGEOM_INSIIUCIUIE IIPUL.N) 1ottt e e e e e e et et e ettt e e e 85
5.7.5.4 TheSRIB_HDRSIrUCIUrEe @riD.N) oo e e e e e e e e et et et e et e eeenees 88
5.8 RELATED PROCESSING ...ttt e e et e e e e e e bt e e e e eab e e aeennaaeeeeaas 89
5.9 DATA BACKUP. ...t e ettt e e ettt e e e e mmmmmmeeen e e e e et s 89
5.10 RECOVERY FROM ERRORS, MALFUNCTIONS, & EMERGENCIES............cccoiiiiiiiiiieeeeie, 89
D11 MESSAGES. ...t e et e et et e e e e aa s eeeenmmnees 89
APPENDIX A. GRIB MESSAGE STANDARD ...ttt ettt e et e e e e et e e e etb e e aaeeaa e aaaeees 91
APPENDIX B. MEL GRIB SOFTWARE LIBRARY INVENTORY e 93
APPENDIX C. GRIB EXTENSIONS ...ttt et e e et e e e ettt e e e e e et e e e e e et e e e eeaban s 97
APPENDIX D. RUNNING GRIB EXAMPLESttt e et e e et aeeeaanas 99
D.1 RUNNING " DECODEREX ..itittuuitttttuuaatettua e aaettta e aaeesaa e aaettaaaaeetaaaeaeesaa e aeeetbaa e eeessan s eeeeataaaeaeesannaeaaennans 99
D.2 RUNNING " GETGRIBIEEEtitttuuaatttttuaatettt e e e ettt e e e eeaba e e et e e ta e e e ettt e e et eaba e e e e e e ta s e e eeebba e eaeesaa s eeeenbnnaaaees 99
D.3 RUNNING " ENCODEREXL' ...uiiiiittiieit ittt e e ettt e e ettt e e e ettt e e e et e b b e e et e ee e oo e et b b e e et e e bb e e e e e eaa e e e eebba e eaesaanss 100
D.4 RUNNING " ENCODEREX2'iittittuuettetti e e e ettt e e e ettt e e e ettt e e e eeba e et e e e aa oo e e ee b b e e e e eeba e e e eeeaaa e eeeebban e aaeesnnnss 100
D.5 RUNNING " ENCODEREX3'uiitttttuuaattttuaaaettti e aeetaa e aaaeeta e aeeett e e et esaa e aeeetba e aeeetba e eaeesan s eeeebbanaaaeesnnnss 101
APPENDIX E. GRIB SOFTWARE CONVENTIONS ...ttt e e e 103
E.1 DeFAULT FILENAME FORENCODEDGRIB MESSAGES. ...t uettttttiiiaieitiiaeeeetts e e et eeeetb e e e e eai e e eeabinaaaes 103
A [T | T 103
E.3 DECODEDIEEE HLE NAMES (FROMGRIBSIMP)....ccvuuttttuuisieeesteteeeesesttsnnssaaeessseeesssssssnnnaaaeasseeessssnsnnnnnnnns 104
E.4 DeFAULT DECODER TABLEFILE NAME CONVENTIONS.ttttuuiatetttnaateeti e eaeetti s eaeeataaaeaesana e eeeeteanaeaeesnanns 105
APPENDIX F. MEL GRIB SOFTWARE LIBRARY ERROR MESSAGEScoiiiiiiii e 107
APPENDIX G. ACRONYMS/ABBREVIATIONS ..ottt s e e e e e e e e e e ettt s s s e e e e eaaeeeeensnnes 111
IN D EX . ettt ettt ettt oot th oo e et th oo e e e eh e e e et ta e e eeeta e e e ennnmmmaaaeneeeeebaa e eeennan s 113

LIST OF FIGURES

FIGURE L. GRIB BN CODING PROCESS. ... itiitititiiie ettt et et e et e et e et e et e et e e e s e e e et e ea e e b e et s s e st s an s s ensenseasbaaenns 7
FIGURE 2. GRIB DECODING PROCESS. .t ititititte ettt ettt e e e e et e et e et e et e e e e e e ea e aa e e b e ea s sa st s anssaseneensenesbaaanns 8

LIST OF TABLES

TABLE 1 . CHOOSINGSYSTEM CONFIGURATION DURING INSTALLATION v .cttttniteenetneeneiteiseetiessssnssnssnesneeneensesaesesnes 13
TABLE 2. SUB-TABLE | DENTIFIERS ..t tttuttuittttt it ttta st ea st s e s ea et s ea e ea e s st s s s s easeaseasst e e s s st s aassaeeaeenseastassnssnssnennss 64

10/15/98 Version 1.0 IX

GRIB USERM ANUAL

NOTE: Conventions
This manual uses the following typographical conventions:

CAPITAL LETTERS for the names of Internet protocols, acronyms, and abbrevigtions
(seeAppendix G).

Boldfacetype for headings and references to other sections in this manual.
Italics for emphasis and publication titles.

Monospaced font for keywords in computer system commands, directory path
names, and file names. In proper context, the tesigmare brackets] represents
command options and text #angle brackets> represents items the user shot
replace with applicable text.

d

Monospaced italic font for Internet addresses.

X Version 1.0 10/15/98

GRIB USERM ANUAL

SECTION 1. SCOPE

1.1 IDENTIFICATION

This document pertains to the Master Environmental Library (MEL) Gridded Binary
(GRIB) Software version 3.0. This version of the GRIB data exchange format
encoder/decoder software is recommended for use in conjunction with the MEL.

1.2 SYSTEM OVERVIEW

GRIB is a standard format designed by the World Meteorological Organization (WMO) to
support the efficient transmission and storage of gridded meteorological data. Formally
known as a general purpose, bit-oriented data exchange format, GRIB was approved by the
WMO in 1985 and designatdéeM 92-VIII Ext. GRIB (GRIdded Binary)Changes and
extensions approved in 1990 were incorporated@®oB, Edition 1

A GRIB message consists of a series of header sections, followed by a bitstream of packed
data representing one two-dimensional (2-D) grid of data values. The header sections are
intended to fully describe the data included in the bitstream, specifying information such as
the parameter, units, and precision of the data, the grid system and level type on which the
data is provided, the process used to generate the data, and the date and time for which the
data are valid. Additional descriptors may be added through the definition of extensions,
but any changes to the standard must be backward compatible, so that a GRIB message
can be read by any standard GRIB decoder.

Non-numeric descriptors are enumerated in tables, such that a 1-byte code in a header
section refers to a unigue description. The WMO provides a standard set of enumerated
parameter names and level types, but the standard also allows for the definition of locally
used parameters, geometries, and models. Any activity that generates and distributes GRIB
messages must also make their locally defined GRIB tables available to users.

1.3 DOCUMENT OVERVIEW

This manual applies to the MEL GRIB Software Library 3.0, which provides a set of C
functions for encoding and decoding GRIB messagestion 3provides an overview of

the features and limitations of this software implementation of the WMO GRIB code.
Instructions for installing and testing the library are includeSidation 4 The standard

MEL GRIB decodergribsimp , is presented i8ection 5to introduce the GRIB message
structure and typical procedures in handling GRIB messa§estion 5provides the

details of the programming interface to the MEL GRIB library, including a series of sample
encoding and decoding programs listedppendix D. The complete structure of a

standard GRIB message is presentefippendix A, while Appendix B lists the MEL

10/15/98 Version 1.0 1

GRIB USERM ANUAL

GRIB Software Library inventory antippendix C covers GRIB extensions. GRIB

software conventions are detaileddppendix E and possible error message@ppendix
F.

For a complete description of the WMO GRIB standard, including all standard parameter
and level definitions, se&MO Manual 306: Manual on Codes, Volume 1.2

Version 1.0 10/15/98

GRIB USERM ANUAL

SECTION 2. REFERENCED DOCUMENTS

2.1 GOVERNMENT DOCUMENTS

2.1.1 STANDARDS
None
2.1.2 OTHER DOCUMENTS

a. Department of Defense. Modeling and Simulation Master Plan, DoD 5000.59-P.
Washington, DC: DoD, October 1995.

b. Defense Modeling and Simulation Office (DMSQ). MEL Software User Manual.
Arlington: DMSO, 10 July 1997.

2.2 NON-GOVERNMENT DOCUMENTS

a. World Meteorological Organization. WMO Manual 306: Manual on Codes. 2 vols.
Geneva: WMO, 1988/1991/1997.

b. WMO. World Weather Watch Technical Report No. 17: Guide to WMO Binary
Code Forms. 2 parts. Geneva: WMO, May 1994.

c. Doty, Brian. _The Grid Analysis and Display System (1995) : n. pag. Online.
Internet. 27 May 1998. Available:
ftp://grads.iges.org/grads/sprite/doc/gadoc151.txt

10/15/98 Version 1.0 3

GRIB USERM ANUAL

This page intentionally left blank

Version 1.0 10/15/98

GRIB USERM ANUAL

SECTION 3. SOFTWARE SUMMARY

3.1 SOFTWARE APPLICATION

The MEL GRIB Software Library software is used to encode and decode gridded
meteorological data available through the MEL. The software provides a stand-alone
decoding application as well as a programmer’s interface to the library functions such that
GRIB encoding and decoding can be incorporated directly into user applications.

3.2 SOFTWARE INVENTORY

The inventory of all files that make up the MEL GRIB Software Library is listed in
Appendix B.

3.3 SOFTWARE ENVIRONMENT

The MEL GRIB Software Library 3.0 was developed in ANSI C and should be applicable
to any computing environment. However, this software has been developed in the UNIX
environment, and all testing has been limited to Silicon Graphics, Inc. (SGI) and Sun
platforms. It has not been tested on other platforms/environments.

A C compiler must be installed on the target computer before the MEL GRIB Software
Library can be used. The default installation of the Library includes source code files, C
include files, and table files, as well as a complete decoding application and examples of
simple decoding and encoding programs. Some programming is required (in any language
that can interface with C functions) to attain full use of the MEL GRIB Software Library.

3.4 SOFTWARE ORGANIZATION AND OVERVIEW OF OPERATION

The functions in the MEL GRIB Software Library are designed to be called by a user-
developed main program. There are many different program organizations for using this
Library. Section 3.4.1decribes the sample encoding process at a high-level, as is depicted
by the flow diagram idrigure 1. Section 3.4.2lescribes the sample decoding process at a
high-level, as is depicted by the flow diagrankigure 2. Actual programs will vary from
these examples depending on the structure of the local storage mechanism (i’dfildEEE

vs. relational database).

! Institute of Electrical and Electronics Engineers

10/15/98 Version 1.0 5

GRIB USERM ANUAL

3.4.1 ENCODING A GRIB MESSAGE

Figure 1 depicts the process used for encoding one or more GRIB messages of the
same geometry type. The following steps are followed to encode:

a. Callinit_enc_struct to initialize the three internal encoding structures.

b. Fillthe GEOM_IN structure either manually or from an external file, if it is
available. The external file can be read in by calihgnc_geom . Refer to
“$GRIB_ENV/data/encoder_ex2.geom” for the required format.

c. Fillthe USER_INPUT structure either manually or from an external file, if it is
available. The external file can be read in by callingnc_config . Referto
“$GRIB_ENV/config/lencoder.config” for the required format.

d. Create storage for a floating point array large enough to support this grid’s
dimension. The dimension varies for each geometry type and is computed by
multiplying the number of rows by the number of columns. In this example, the
same geometry is shared by all GRIB messages so the program will ‘recycle’ this
array for the entire run.

e. Callinit_gribhdr to create storage f@RIB_HDRstructure (calbnce.

f. For each GRIB message to be encoded:

(1)

2)

3

4)

®)

Fill in theDATA_INPUTstructure with the information pertaining to the
particular 2-D grid to be encoded. This information can be stored in an
external file, which can then be read in by functibrenc_ffinfo . Refer to
“$GRIB_ENV/data/encoder_ex2.info” for the required format.

Fill the data array. Unformatted binary data files that hold the data for the grid
can be loaded by calling_enc_ieeeff . Note that these binary files do not
contain the 4-byte Header and Tail as in the FORTRAN IEEE files. Also, they
must be (#rows * #cols * sizeof (float)) bytes long.

Callgrib_enc to encode a GRIB message from the information provided in
the three encoder structures and the floating point array. The encoded message
is returned in structureRIB_HDR

Callmake_default_grbfn to create a default filename based on the content
of theDATA_INPUTandUSER_INPUTstructures. Alternatively, a filename
can be manually set using any scheme desired.

Call gribhdr2file to write the encoded message frGRIB_HDRstructure
out to an external file with the specified name.

g. Free the floating point array used by the encoder.

h. Callfree_gribhdr to release storage GRIB_HDRstructure (calbnce.

Version 1.0 10/15/98

GRIB USERM ANUAL

2

Callinit_enc_struc

v
GEOM_IN available
No

Fill GEOM_IN manually]

Y
USER_INPUT available
No

Fill USER_INPUT manually

Callld_enc_geon

Callld_enc_config

v
Create array storal;e
v
Call init_gribhdr
k2
—)@ch GRIB message to be encgded
}2
msg info file available Callld_enc_ffinfo
No

[Fill DATA_INPUT manually
Y
Callld_enc_ieeef
No
I Fill grid data array manuall/
2
I Call grib_enc I
v
I Call make_default_gribfnl
v
| caigribhdrzie |
v
Yes
| Free array storage |

¥
| calfree_gribhar |

Figure 1. GRIB Encoding Process

10/15/98 Version 1.0

GRIB USERM ANUAL

3.4.2 DECODING A GRIB MESSAGE

Figure 2 depicts the process for decoding an input file with one or more GRIB
messages. The following steps are followed to decode:

a. Callinit_gribhdr

(onceat program start) to creaBRIB_HDRstructure storage.

b. Open the input file containing GRIB messages and initialize message pointer to 0.

c. Loop indefinitely to process all GRIB messages in the input file:

(1) Callgrib_seek to load the next me
Break out of loop ifend of file”

(2) Callinit_dec_struct

(3) Callgrib_dec

to clear out

ssage from the input file BRIB_HDR
OR*“error”

the decoder structures.

to decode the messagedRIB_ HDR Decoded information is

returned in decoder structures and a newly allocated floating point data array.

Call init_gribhdr

I Open input file; Seoffset =OI
v
—><_Loop on all GRIB Messages in FI&>

Call grib_seek

i

Yes
IF EOF or ERROR

No

Call init_dec_strug

Call grib_dec

Yes

Call apply_bitmap

|F BMS is included

|

Process Data

|

Free float array, increment offsgt

v
L—End of Loop on GRIB Messages>
v

Call free_gribhdr |«

Figure 2. GRIB Decoding Process

Version 1.0

10/15/98

GRIB USERM ANUAL

(4) If the Bitmap Section (BMS) is included, cafiply_bitmap to apply the
bitmap to the floating point array to restore the full grid.

(5) The float data array can now be processed in any way desired.
(6) Free the floating point array createddoip dec

(7) Increment the byte offset in the Input File to point to the end of the message
just processed. This will tejkib_seek where to begin scanning for the
next message in the Input File.

d. End Loop.

e. Callfree_gribhdr to release storage f@RIB_HDRstructure (call once before
exiting program).

3.5 CONTINGENCIES/ALTERNATE STATES AND MODES OF
OPERATION

Not applicable

3.6 SECURITY AND PRIVACY

3.6.1 US GOVERNMENT SYSTEM

The MEL system and related components are intended for the communication,
transmission, processing and storage of US Government information. As such, they
are subject to monitoring to ensure proper functioning, protect against improper or
unauthorized use or access, verify presence and performance of certain security
features or procedures, and other like purposes. Such monitoring may result in the
acquisition, recording and analysis of data being communicated, transmitted,
processed, or stored in the system. If monitoring reveals evidence of possible criminal
activity, the evidence may be provided to law enforcement personnel. Use of the MEL
system constitutes consent to such monitoring. The Disclaimer page available via a
hyperlink from the MEL Web page describes the security and monitoring agreements
for all MEL users.

3.6.2 LIMITS OF LIABILITY

The MEL GRIB Software Library is being furnished without cost and, therefore, "with
all faults and as is." The DMSO; Naval Research Laboratory, Marine Meteorology
Division; and Science Applications International Corporation do not provide any
warranties, expressed or implied, that the software as provided will meet your
requirements or that its operation will be uninterrupted or error free.

10/15/98 Version 1.0 9

GRIB USERM ANUAL

By making the software available without cost from the DMSO; Naval Research
Laboratory, Marine Meteorology Division; and Science Applications International
Corporation, there are no implied warranties of merchantability or fitness for a
particular purpose nor are there any obligations to provide any software support.
There is no warranty that the software is free from defects in materials or
workmanship. There is no warranty that the software will perform substantially in
accordance with any specifications set forth in the documentation. There is no
obligation on the part of the DMSO; Naval Research Laboratory, Marine Meteorology
Division; or Science Applications International Corporation to replace any software or
hardware on which it may be installed.

The DMSO; Naval Research Laboratory, Marine Meteorology Division; and Science
Applications International Corporation shall not be liable for special, incidental,
consequential, indirect or other similar damages arising from the use of the software,
even if the DMSO; Naval Research Laboratory, Marine Meteorology Division; and
Science Applications International Corporation have been advised of the possibility of
such damages.

In no event will the DMSO; Naval Research Laboratory, Marine Meteorology

Division; and Science Applications International Corporation be liable for loss of data,
lost profits, indirect damages arising from the use of the program, however caused and
on any theory of liability.

3.6.3 LIMITS OF ENDORSEMENT

References to any commercial products, processes or service by trade name,
trademark, manufacturer or otherwise does not necessarily constitute or imply its
endorsement, recommendation, and favoring by the US Government, US Navy,
DMSO, or NRL.

3.7 PROBLEM REPORTING AND RECOMMENDATIONS

The MEL provides users with e-mail access for technical questions, suggestions, or
problems. E-mail hyperlinks are generally available at the bottom of each MEL Web page.
An e-mail message containing a complete description of a problem and symptoms may be
addressed to:

mel_helps@msosa.dmso.mil

General MEL comments or recommendations for enhancements may be sent to the same
address.

10 Version 1.0 10/15/98

GRIB USERM ANUAL

SECTION 4. ACCESS TO THE SOFTWARE

4.1 FIRST-TIME USER OF THE SOFTWARE

4.1.1 EQUIPMENT FAMILIARIZATION
Not Applicable
4.1.2 ACCESS CONTROL

The MEL GRIB Software Library Web page may be accessed at the following
Uniform Resource Locator (URL):

http.//mel.dmso.mil/cgi-bin/order_grib
4.1.3 INSTALLATION AND SETUP OF THE MEL GRIB SOFTWARE LIBRARY

4.1.3.1 ©PY THE SOURCE CODE

Copy the MEL GRIB Software Library compressed and “tarred” file to the
directory where the library is to be installed (elgst/local). Uncompress
the file using the following commafid

gunzip grib_v3.0.0.tar.gz
To expand the tar file, type the following at the command prompt:

tar -xvf grib_v3.0.0.tar

NOTE: PC Users can expand the MEL GRIB software library using any PC
archive utility such as WinZip. Simply opgrib_v3.0.0.tar.gz and select
a directory for installation.

The software source code will be expanded into a directory structure relative to
the current directory, with a main level directory namgrif v3.0 (note the
patch levelis dropped). The following directory structure relative to the current
directory should now exist:

2 This assumes the user has the GNU Zip file compression application installed on the computer

10/15/98 Version 1.0 11

GRIB USERM ANUAL

Jgrib_v3.0
bin : executable code for programs under src
config : user configuration files for encoder
data : sample data used by the encoder/decoder examples
doc : documentation
include : required include files
lib : compiled GRIB library
libsrc : GRIB encoder and decoder library functions
run : recommended location where to run the example programs
src : location of included software examples using the

library
+ decoder_ex : source code for sample decoding programs
+ encoder_ex : source code for sample encoding programs
+ getgribieee: source code for a GRIB to IEEE decoder
+ gribsimp: source code for the MEL decoder program

tables : files containing GRIB conversion information

4.1.3.2 &TTING THE GRIB ENVIRONMENT

The GRIB software requires that the environment vari@BlB_ENVbe set to
the complete base path of the GRIB library structure. For example, if the
software is installed under the pathkr/local , the variablecRIB_ENVshould
be set tgust/local/grib_v3.0 . This is accomplished by typing the
following at the command prompt:

setenv GRIB_ENV /usr/local/grib_v3.0

It is also convenient to include the GRIB "bin" directory in the default path. If
necessary, ask the local System Administrator for assistance in modifying the
default path of the environment for the computer where the GRIB software will
be run.

NOTE: PC Users can add the following lines to A&TOEXEC.BATIile to
properly set up the computer environment. The following example assumes the
GRIB software has been installed at the root level of C:\.

SET GRIB ENV=C:\grib_v3.0
SET PATH=%PATH%;C:\grib_v3.0\bin

12

Version 1.0 10/15/98

GRIB USERM ANUAL

4.1.3.3 BILDING THE LIBRARY

When themake utility is used to compile and install the MEL GRIB Software
Library and all included programs, all of the required system specific
environment variables are provided by the $&RIB_ENV/config.os . The
following configurations are currently supported by this software version: SGI
IRIX 6.2 using the 'cc' compiler, SGI IRIX 6.2 using the 'cc' compiler with Vis5D
extensions, SunOS using the acc compiler, and SunOS using the GNU C
compiler. If the target system configuration does not conform to any of these,
follow the instructions under "Creating your Own Operating System
Configuration™ at the end &donfig.os ' to create a new section for the specific
configuration.

If the Vis5D extensions are to be included in the proggabsimp, ' enter the
complete path to the Vis5D source and include files installed on the target system
by defining thev5DSRCPATHINAV5DINCPATHvariables, respectively, in
GRIB_ENV/config.os . These two variables are left undefined if the Vis5D
extensions are not used. These two variables are only accessediysting

Makefile and do not affect the library build. This install requires that Vis5D is
already installed on the target system. This version was developed and tested
using Vis5D 4.3, wittbinio.c/.h andvsd.c/.h source and include files

linked.

NOTE: The names of these files in other versions of Vis5D cannoi be
guaranteed.

The simplest way to install the GRIB software is to run the 'Install’ script
provided in the main directory, as defined by@®RB_ENVvariable. The
'Install' script requires an argument that instructsrthlee utility which system
configuration in ‘config.os' to use. Choose one of the following:

Table 1. Choosing System Configuration during Installation

Action Configuration

Install sgi_cc <cr> SGI (IP28) IRIX64 v6.2

Install v5d_sgi_cc <cr> SGI (IP28) IRIX64 v6.2, with vis5d

Install sun_acc <cr> SunOS (sun4c) v4.1.3 (acc v.SC3.0.1)

Install sun_gcc <cr> SunOS (sun4c) version 4.1.3 (v2.6)

Install XXXX <cr> where XXXX is the name used in
‘config.os' for your newly defined
configuration

10/15/98 Version 1.0 13

GRIB USERM ANUAL

NOTE: The library has only been tested on 32-bit architecture computers.
There is aVORD_BIT_CNvVariable that is set iimclude/grib.h that is
intended to configure the low-level routines for 16- or 64-bit architectures) but
this has not been tested.

4.2 INITIATING A SESSION

The MEL GRIB Software Library is a series of functions that can be called from another
program. Initiating a session will depend upon how the user has developed the calling
program.

Once the MEL GRIB Software Library has been successfully installed and tested, the
system is ready to begin encoding and decoding GRIB messages. The following are some
of the common starting points for users of this software:

* Retrieving data after MEL delivery

Verify that the programribsimp has been built and is located in the

$GRIB_ENV/bin directory. Typing and enteringibsimp with no arguments

provides command line help. The tape archive (tar) file delivered by MEL can be used
directly as the input file tgribsimp . For further help witlyribsimp , seeSection

5.3

* Reading GRIB messages directly into an existing software application

Begin by reading through this Manual, in particu8&ction 5.4 and then working
through the examples provided in the direct®®RIB_ENV/src/decoder ex . The
gribsimp program, located IiGRIB_ENV/src/gribsimp , also provides an
advanced example of a GRIB decoder.

* Delivering data in GRIB
Encoding GRIB is more difficult than decoding it, and requires some understanding of

the GRIB format. Start by readii@gection 5.5and looking over th&MO Manual

306 (seeSection 2.2, then work through the examples provided in
$GRIB_ENV/src/encoder_ex.

4.3 STOPPING AND SUSPENDING WORK

Not Applicable

14 Version 1.0 10/15/98

GRIB USERM ANUAL

SECTION 5. PROCESSING REFERENCE GUIDE

5.1 CAPABILITIES

This section provides an overview of the features and limitations of the MEL GRIB
Software Library implementation of the WMO GRIB encoder/decoder algorithms. The
MEL GRIB Software Library includes some additional descriptors in the GRIB header
sections, and does not fully support all features of the WBIRDB Edition 1standard.
However, messages generated by this library are fully com@RH Edition Imessages.

5.1.1 FEATURES

5.1.1.1 uBRARY API

An important feature of the MEL GRIB Software Library is that it provides an
interface to generic encoding and decoding functions that permit the development
of customized GRIB applications and/or the development of a GRIB

Input/Output layer for existing applications. The Library is written in C, but it

has been successfully incorporated into FORTRAN applications. For more
information on the FORTRAN-C interface, contact the developers.

5.1.1.2 ADITIONAL HEADER |INFORMATION

The MEL GRIB Software Library supports the use of four additional parameters
in the Product Definition Section (PDS) of the GRIB message. An overview of
these parameters is provided here, Appendix C contains a detailed discussion
of the implementation of these GRIB extensions.

NOTE: These extensions are completely valid under the WMO GRIB
specification, and will not cause problems for any properly written GRIB
decoder.

Reference Seconds — Seconds have been added to the specification of the
reference time

Tracking ID — A 2-byte integer that can be used to track the
heritage of a message or dataset

Parameter Sub-ID — Five sub-tables of locally defined parameters are
supported

10/15/98 Version 1.0 15

GRIB USERM ANUAL

Local Table ID — A version identifier has been added for the local
tables

5.1.1.3 XTERNAL TABLES

The use of externally stored tables for the definition of parameters, level types,
geometry and model names makes the MEL GRIB Software Library very flexible
in its application. To as great an extent as possible, the encoding and decoding
functions of the library are independent of the process of "mapping"” descriptive
information to and from the codes in a message. This permits the writing of more
generic applications that can then be used at multiple encoding centers by simply
modifying the external tables. A complete description of the format of the
external tables with a discussion on local table management is included in
Section 5.6

The file name for the external tables is made up of information contained in the
message header sections. This allows decoding applications to automatically
determine and attempt to load the required table. In addition, since tables from all
encoding centers have a unique name, they can be collected at a central File
Transfer Protocol (FTP) site, allowing the decoding application to download
required tables automatically.

5.1.2 LIMITATIONS

5.1.2.1 RID DEFINITION SECTION LIMITATION

Only the following grid types are supported by the MEL GRIB Software Library
3.0:

e Latitude/Longitude (Type 0)

e Mercator (Type 1) (Decoding only)

e Lambert Conformal (Type 3)

» Gaussian Latitude/Longitude (Type 4) (Decoding only)

» Polar Stereographic (Type 5)

Rotated and stretched grids are not supported.
5.1.2.2 FACKING METHODS

The library uses the simple packing method for gridded data. Spherical
Harmonic coefficients and second order packing are not supported.

5.2 CONVENTIONS

Appendix E defines default naming conventions for all input and output files used by the
Library

16 Version 1.0 10/15/98

GRIB USERM ANUAL

There are no unique conventions used by MEL GRIB software regarding use of colors in
the displays or audible alarms.

5.3 LEARNING GRIB USING GRIBSIMP

The prograngribsimp is included as a standard part of the Library, and serves as the
standard GRIB decoding utility for the MEL project. It provides many useful features as
outlined inSection 5.3.1and is a good example of how to build a robust GRIB decoding
program. If the library was successfully installed, there should be a compiled version of
gribsimp in the directorysGRIB_ENV/bin that is ready for use.

This section has two objectives:

a. Demonstrate the use gfibsimp in handling the decoding of GRIB messages
b. Provide a hands-on overview of the GRIB standard

5.3.1 OVERVIEW OF GRIBSIMP

Thegribsimp decoder is a stand-alone program for decoding one or more GRIB
messages. It is based on the standard GRIB library, but also adds capabilities that are
useful in handling GRIB messages. It is designed to handle any number of valid GRIB
messages within a single file and will automatically skip over headers between
messages. This means thabsimp can process messages concatenated into one

file (by cat ortar) without any problem. It also allows users to create an index of

the messages in a file, so individual messages can be selected for extraction.

The output from the program depends upon the specified command line arguments.
As a minimumgribsimp will provide a summary of the GRIB messages contained
in the input file. Optionallygribsimp can be used to generate IEEE binary data files
for each message decoded, create a VisBila set, or even generate a Grid Analysis
and Display System (GrAD$}ata set complete with a script to visualize each GRIB
message. Each of theibsimp output options will be discussed and explored
through examples in the following sections.

® Available athttp.//www.ssec.wisc.edu/~billh/vis5d.html
* Available athttp:/grads.iges.org

10/15/98 Version 1.0 17

GRIB USERM ANUAL

As discussed iection 5.6.1the GRIB standard relies on code tables to transform
descriptive information into binary code. The WMO provides a standard set of
parameter and level definitions, but GRIB producers are permitted to add their own
definitions, so there is no standard GRIB decoding table that covers all messages. The
MEL GRIB Software Library works at the binary code level, and does not try to
decipher what is meant by the codes it encounters. This makes the Library more
robust and universal, but it leaves the task of deciphering the binary codes to the user.
The prograngribsimp attempts to automate the use of any required decoding tables
by determining which decoding table is required using information in each message. It
then attempts to load the required table from the BG&IB_ENV/tables directory,

and will attempt to download the required table from an FTP site if it is not found
locally.

NOTE: The automated FTP feature requires that the software be run on a gystem
that supports the UNIX sh environment.

If gribsimp cannot find the table it requires, it will prompt the user with options of
either using the default WMO table or providing a path to a table they wish to use.

5.3.2 COMMAND LINE OPTIONS

This section provides a complete description of the command line options available for
gribsimp . The next section will present examples demonstrating how to combine the
command line arguments for common decoding operations. The command line syntax
for gribsimp follows:

gribsimp -iinfile [-d] [-0] [-V] [-b] [-] indx] [-print][-g [dtg IV]] [-v5d dtg

Ivl [v5dfn]]
[-D [path]] [-X indx] [-dump]
[-t]

[-s Table]

-i : Required flag for specifying an input GRIB file, specifiedibfie ." The
input file can contain one or more concatenated messages (i.e., combined using
tar), with or without headers between the messages.grfdsmp program
will exit if no input file is specified.

-d,-D,-t,-s : gribsimp expects only one of these four flagd. instructs
gribsimp to create a summary log file calledRiB.log that contains all
header information and the first 100 data points from each message in the input
file. -D creates the same summary fileds but performs table lookups that
provide text descriptions for the parameter and units, the level, the model, and
the geometry, if included. For more information on the format of the decoder
table name, se&ppendix E.4. gribsimp builds the table name from header
information in each message and then searches for the table in the following
three locations:

a. The directory specified by the optional 'path’ parameteb to

18

Version 1.0 10/15/98

GRIB USERM ANUAL

b. The$GRIB_ENV/tables directory

c. The directory specified by theABLES_PATHvariable declared at the
top ofgribsimp.c ~ (default value is./tables).

If gribsimp is unable to find the required table in any of these locations, it will
attempt to download the required table from the MEL GRIB Tables FTP site
using a UNIX shell script.Note: This feature requires the software runs on a
system that supports the UNIX sh environmengt)bsimp will abort if it is
unable to locate the required table, or the table it uses does not contain a
definition for one of the binary codes in a message. The user then has three
options to choose from before proceeding with decoding:

a. The user is urged to contact the activity that generated the message to
obtain the proper table

b. The-s option can be used to instrugtbsimp to use a specified table.
The specified table must be located in$k@RIB_ENV/tables directory.

c. The-t option can be used to instrugtbsimp to use the default WMO
decoder table that contains only the WMO parameter and level definitions
(Note: This table contains no model or geometry definitions).

Instructsgribsimp to generate a 32-bit IEEE unformatted binary data file for
each message decoded. These binary filewticontain the 4-byte header or
trailer as in the IEEE files created in FORTRAN. They contain just the
floating-point data, organized as is specified in the Grid Definition Section of
the message.

The file naming convention and format for the files generated by this option is
described irAppendix E.3.

Instructsgribsimp to not apply any bitmap found to the data. This means
gribsimp will only write out the defined data points and it will be left to the
user to accurately apply a bitmap, if required.

CAUTION: The-b option should only be used when the usevesy familiar
with the data being decoded.

Displays the version information fgribsimp . This option is useful when
seeking help with a decoding problem.

Instructsgribsimp to generate an index file whose name must be specified
after the-l. The index file contains one descriptive line for each valid GRIB
message found iimfile ." The index file can then be reviewed and any
messages the user does not wish to decode may be deleted.

10/15/98

Version 1.0 19

GRIB USERM ANUAL

The first line of the index file contains header information describing the
format of the subsequent line and should never be deleted from the file. The
remaining lines each describe a single valid GRIB message, using the
following format:

YY-MM-DD-HH-TAU-PID-SUB-LVL-HEIGHT-GID-OFFSET

This represents the Year, Month, Day, and Hour of the Reference Time,
followed by the Forecast Period, the Parameter ID, the Parameter Sub-I1D, the
Level ID, the Height value, the Grid ID, and the byte location where this
message begins within the input file.

-X: This option instructgribsimp to decode only those messages that are listed
in an index file previously generated using the option. The index file
name must be specified after the and must be used with the same input file
used to create it.

NOTE: When in this modegribsimp will not scan the input file for
valid GRIB messages, but rather just decode the messages at the byte
locations specified in the index file. Therefore, it is extremely important

that the byte location values not be modified when editing the index filg.

-print : Prints the internal GRIB structures to the screen after decoding each
message. This option is useful for solving decoding problems with
messages from a new source.

-dump: Prints as much information as possible from an incomplete message. This
option is useful for finding out how much information is actually valid in an
incomplete message.

-g Creates a GrADS data set from the GRIB messagmdilen * ." The output
will be the required GrADSmp and.ctl files, and a script called
draw_all.gs that will display an animated sequence of all messages
included in the GrADS data set. The default uses the reference time and
level ID of the first message as the basis of the data set. An alternate
date/time (of fornyyyymmddhh) and level ID may be specified explicitly.
Refer to Examples 4 and 538®ction 5.3.3or more information. The
GrADS software and documentation are available at
http.//grads.iges.org

NOTE: The GrADS option only supports spherical and Lambert conformal
grid definitions.

Version 1.0 10/15/98

GRIB USERM ANUAL

-vbd : Creates a Vis5D data set starting from the specified date and time using the
specified level type for the vertical dimension. Both the date-time group
and the GRIB level type indicator are required parameters. Optionally, an
output file name can also be specified as the third parameter. If no file name
is specified, a default file name of the fornygyymmddhh.lvivsd " will
be used, whergyyymmddhh is the date-time group and ‘Ivl’ is the level
type ID. Refer to Example 6 Bection 5.3.3For more information.

There are only two GRIB level types supported at this time:

100 — Implies input data is expressed as pressure levels.
105 — Implies input data is expressed as constant height above
ground level

Only one level type can be specified, and a non-valid level type 1D will
causegribsimp to exit. Note that for level type 10&§jbsimp will also

load any surface (001) and/or mean sea level (102) messages in the input file
as constant height surfaces (105) with a value of 0. If there are no messages
in the input file that match the specified date-time and level type, no output
file will be created.

Th Vis5D option is ONLY available gribsimp was compiled with the
Vis5D environment variables defined, and requires that Vis5D be installed
on your system. Refer ®ection 4.1.3.3or installation instructions. Refer
to the Vis5D documentatidrior information on obtaining and using Vis5D.

The Vis5D option is not fully implemented in this version of the GRIB
software. The following assumptions are made in creating Vis5D data sets:

e Only spherical and Lambert conformal grid projections are
supported

* Only defines text names for a handful of parameters. All others
have a default name built from the GRIB parameter code.

« Assumes all messages in the input file are for the same model and
geometry. Will drop any messages that do not match the model
and geometry of the first message.

* Will only process messages of same or later date-time than that
specified on the command line.

® Available athttp://www.ssec.wisc.edu/~billh/vis5d.html

10/15/98 Version 1.0 21

GRIB USERM ANUAL

5.3.3 EXAMPLES USINGGRIBSIMP

This section includes a number of examples to illustrate featuggibsimp , and

should also help to understand the organization of GRIB messages. Refer to
Appendix A of this manual anlVMO Manual 306: Manual on Codé&s details on

the GRIB standard. In each example the command to be executed is presented first,
followed by the expected result that should be seen on the display.

All of the examples use the sample GRIB data file
$GRIB_ENV/data/GRIB0797.tar , which is a tar file containing six GRIB
messages.

5.3.3.1 EAMPLE 1: DECODING YOUR FIRST MESSAGE

At the command prompt, type the following:
gribsimp -i $GRIB_ENV/data/GRIB0797.tar -d -v

GRIBSIMP Execution...

Software release: 3.0

GRIB standard version: 1

Grib Library in non-verbose mode
Decoding message found at 512 bytes ...
Decoding message found at 4608 bytes ...
Decoding message found at 8192 bytes ...
Decoding message found at 12288 bytes ...
Decoding message found at 16384 bytes ...
Decoding message found at 20480 bytes ...

This command performs the basic decoding operation on the specified input file, and

includes thev option to obtain version information about the decoder. -iTheption

is used to specify an input data file, and-theoption will generate a log file

(GRIB.log) containing header information and a sample of data from each message

decoded. With thed option, no attempt is made to load a decoder table and decipher

the codes used in the header section. Since the use of decoder tables is often a source

of error, it is a good idea to first decode the messages with only thption to ensure
the input file contains valid GRIB messages. Compar&i8.log file created with
the file SGRIB_ENV/data/GRIB.test1 to verify that the library angribsimp are
working correctly.

5.3.3.2 EAMPLE 2: ADDING INDEXING AND ADDITIONAL PRINTING

At the command prompt type the following:
gribsimp -i $GRIB_ENV/data/GRIB0797.tar -D -l index

GRIBSIMP Execution...

22

Version 1.0 10/15/98

GRIB USERM ANUAL

Decoding message found at 512 bytes ...

-> LookupTbl '$GRIB_ENV/tables/gltab 58 2.0'
Decoding message found at 4608 bytes ...
Decoding message found at 8192 bytes ...
Decoding message found at 12288 bytes ...
Decoding message found at 16384 bytes ...
Decoding message found at 20480 bytes ...

This time theD option has been used to instrgdgbsimp to load a decoder table

based on the information in the message, and decipher the binary codes for parameter
name, level type, model and geometry name. More descriptive information is then
printed toGRIB.log to help interpret the data contained in the messages. Compare
GRIB.log to$GRIB_ENV/data/GRIB.test2 to make surgribsimp is locating

the decoder tables correctly. The format and contents of a decoder table file is
described irSection 5.6.1.1

Also note the use of thé option in this example. This creates an index file, called
'index’ in this case, containing a summary of the messages in the specified input file.
The contents of this index file are shown below:
YY-MM-DD-HR-Tau-ParmID-ParmSubID-LevellD-Level-GDS_Data_Type-Offset
97-07-01-00-000-002-000-102-00000-237-512

97-07-01-00-012-002-000-102-00000-237-4608

97-07-01-00-000-011-000-105-00002-237-8192

97-07-01-00-012-011-000-105-00002-237-12288

97-07-01-00-000-033-000-105-00010-237-16384

97-07-01-00-012-033-000-105-00010-237-20480

For each message, a one line record has been written to the index file that consists of
ten parameters which uniquely specify a product, (for a given model type), plus an
offset that indicates the byte position of the start of that message in the input file. This
file can then be used to select individual messages to decode in any order. The index
file entries are discussed in detaiSaction 5.3.2under options| and-X.

5.3.3.3 EAMPLE 3: CONTROLLING THE DECODING PROCESS

In this example, decoding is restricted to a selected subset of the messages in the input
file, andgribsimp is instructed to write binary files containing the data for each
message decoded. Begin by editing theifidek ' from the last example so that only

the first, third, and fifth messages remain in the file. The index file should now look

like this:

YY-MM-DD-HR-Tau-ParmID-ParmSubID-LevellD-Level-GDS_Data_Type-Offset
97-07-01-00-000-002-000-102-00000-237-512

97-07-01-00-000-011-000-105-00002-237-8192
97-07-01-00-000-033-000-105-00010-237-16384

At the command prompt type the following:

gribsimp -i $GRIB_ENV/data/GRIB0797.tar -X index -0

10/15/98 Version 1.0 23

GRIB USERM ANUAL

GRIBSIMP Execution...

Decoding message found at 512 bytes ...

Creating flat file="FF97070100000002.237.102.00000'
Decoding message found at 8192 bytes ...

Creating flat file="FF97070100000011.237.105.00002'
Decoding message found at 16384 bytes ...

Creating flat file= "FF97070100000033.237.105.00010'

Note that this timgribsimp has only processed the three messages selected in the
index fileJ the three messages deleted were not processed even though they still
remain in the input file. The option was used to create IEEE 32-bit unformatted
binary files for each message decoded. The storage order of the data in the output files
is specified in the Grid Definition Section of each message (which is @GRH&log

file created in Example 1).

For more information on the structure and naming convention used for the files
generated by the option, se&ection 5.3.2andAppendices E.2 and E.3

5.3.3.4 EAMPLE 4: CREATING A GRADS DATA SET

The option-g [dtg IVI] can be included with thgribsimp call to create the

control files required for input to the GrADS public domain visualization system.
GrADS defines a five-dimensional (5-D) data set that includes three spatial
dimensions, time, and a parameter list. Whendheption is used without the date-

time group (dtg) and level type (lvl) argumegtibsimp will create a GrADS data

set based on the date-time group and level type of the first valid message found in the
input file. The specification of the reference date-time group and level type is very
important becausgribsimp makes the following assumptions in building a GrADS
data set:

a. Only messages with a reference time equal to or later than the specified date-
time group will be included in the data set.

b. Only messages with the level type specified will be included in the three-
dimensional (3-D) volume defined for the GrADS data set. Messages of other
level types will be treated as single level fields in the data set. Refer to the
GrADS documentation for more information on how GrADS treats data sets
with multiple vertical coordinate systems.

In this example, no arguments are specified with the —g optigriteimp will use
the date-time group and level type of the first message in the input file. At the
command prompt, type the following:

gribsimp -i $GRIB_ENV/data/GRIB0797.tar -g

GRIBSIMP Execution...

Decoding message found at 512 bytes ...
Decoding message found at 4608 bytes ...

24

Version 1.0 10/15/98

GRIB USERM ANUAL

Decoding message found at 8192 bytes ...

Decoding message found at 12288 bytes ...

Decoding message found at 16384 bytes ...

Decoding message found at 20480 bytes ...

GrADS Control Files= 'GRIB0797.ctl' & 'GRIBO797.gmp'
* Warning: Zdef level (102) only has one Height (00000)

This creates the following three output files: a GrADS control file describing this data
set,GRIB0797.ctl, the associated GRIB mapping fil&RIB0797.gmp , and a

GrADS script,draw_all.gs, that can be called from within the GrADS program.
Since no dtg or level arguments were given, the first message's level (102) and dtg
were chosen as the default values.

NOTE: The last line is a warning to the user that Level 102 only has one height
which in this case is 00000. To accommodate GrADS when this hagpibsis)p
adds an additional height value to the data set.

The GrADS data set is defined by the contral () file, which is shown below for

this data set. Note that the input data file specified in the GrADS control file is the tar
file itself. GrADS can read GRIB files directly once the GRIB mapping fiagd) is
generated, which makes it a very convenient and efficient visualization program for
GRIB data.

gribsimp has created three GrADS variables based on their parameter and level ID's
in the messages. This is done to kegdgsimp independent of the local table
definitions. In the next example, tke option will be used, and the GrADS variables
definitions will include the descriptions contained in the decoding table for this data
set.

Parameters defined on the level type specified in the ZDEF statement have the variable
name ‘aPidLid’, wherePid ' is the 3-digit Parameter ID and 'Lid' is the 3-digit Level

ID. Parameters defined on a level type different then the ZDEF level type have an
additional character appended to their variable name to maintain uniqueness.

GRIB0797 .ctl:

dset Ma/nakajima/GRIB/grib/data/GRIB0797.tar
dtype grib

index *"GRIB0797.gmp

undef -9.99E+33

title /a/nakajima/GRIB/grib/data/GRIB0797.data

* pdef isz jsz LCC reflat reflon iref jref stdlatl stdlat2
stdlon delx dely

xdef 61 LINEAR 126 0.200

ydef 51 LINEAR 29 0.200

* Level (102) only has 1 Height (00000), add dummy 2nd Height
zdef 2 levels

10/15/98 Version 1.0 25

GRIB USERM ANUAL

00000 00001

tdef 2 linear 00Z01jul97 12hr

vars 3

a002102 1 002,102 [No Lookup File]
a011105a 0011,105,002 [No Lookup File]
a033105a 0 033,105,010 [No Lookup File]
endvars

To demonstrate the result of the GrADS option, the saripiv' all.gs ' is created
which displays each parameter from the first to last height for each time increment.
Invoke GrADS by typing:

NOTE: This procedure assumes GrADS is installed on the host computer.

grads -l

Grid Analysis and Display System (GrADS) Version 1.5 Beta-Final
Copyright (c) 1988-1994 by Brian Doty

Center for Ocean-Land-Atmosphere Studies

Institute for Global Environment and Society

All Rights Reserved

GX Package Initialization: Size =11 8.5
ga>

At the GrADS prompt (ga>), typ&n draw_all.gs . GrADS will display the first
field in the data set and prompt the user to press the <Enter> key. Each time <Enter>
is pressed, GrADS will display the next field. In this GrADS session, six grids are
plotted in the following order:

a. Pressure (a002102) at Level 102 Height 00000 for Time 1 (00Z)
Pressure (a002102) at Level 102 Height 00000 for Time 2 (12)
Temperature (a011105a) at Level 105 Height 002 for Time 1 (002)
Temperature (a011105a) at Level 105 Height 002 for Time 1 (002)
U-Wind (A033105a) at Level 105 Height 010 for Time 1 (00Z)
U-Wind (A033105a) at Level 105 Height 010 for Time 1 (00Z)

-0 Qo0 C

GrADS Session:

ga> run draw_all.gs

ZDEF Level has 1 heights, Z ={00000; }

GRIB0797.ctl [Varname #enumerated Parm,Lvl]1->
==> a002102 1 002,102 [No Lookup File]

draw a002102 at Z=1 for (T=1,2)

Press enter to continue:::::

GRIB0797.ctl [Varname #enumerated Parm,Lvl,HEIGHT]
=>3a011105a 0 011,105,002 [No Lookup File]

Version 1.0 10/15/98

GRIB USERM ANUAL

drawing a011105a at LEV=2 (T=1,2)
Press enter to continue::::

GRIB0797.ctl [Varname #enumerated Parm,Lvl,HEIGHT]
=>a033105a 0 033,105,010 [No Lookup File]

drawing a033105a at LEV=10 (T=1,2)

Press enter to continue:::::

5.3.3.5 EAMPLE 5: A SEcoND GRADS EXAMPLE

In this example, a specific date-time group and level ID are specified wittp the

option togribsimp . This is useful if the messages in a GRIB data set are not ordered
chronologically, or if the first message does not contain the level type to be used for

the 3-D volume of data. The dtg has the formatof YMMDDHINd should be

defined as the earliest reference time desired in the data set. The level ID specified
must be contained in at least one of the messages in the data set. Specifying arguments
with the-g option requires some knowledge about the data set to be processed, but

this information may be determined by using the options discussed in the previous
examples.

This example also uses the option, which instructgribsimp to look up
descriptive information for the variables to be included in the GrADS data set.

In the previous example the input file contained six GRIB messages: parameters
Pressure, Air Temperature, and Wind U-Component at two forecast times relative to
the base date-time group. The Pressure fields are defined on a level type of “Mean Sea
Level” (Level ID 102), while the other two parameters are defined on a level type of
“Constant Height above Ground” (Level ID 105). In this example, the level type of

105 is specified on the command line, instructrigsimp to build the GrADS

ZDEF statement based on level type 105 instead of using the level type of the first
message it processes, 102.

At the command prompt, type the following:
gribsimp -i $GRIB_ENV/data/GRIB0797.tar -D -g 1997070100 105

GRIBSIMP Execution...

Decoding message found at 512 bytes ...

-> LookupTbl '$GRIB_ENV/tables/gltab 58 2.0'
Decoding message found at 4608 bytes ...

Decoding message found at 8192 bytes ...

Decoding message found at 12288 bytes ...

Decoding message found at 16384 bytes ...

Decoding message found at 20480 bytes ...

GrADS Control Files= 'GRIB0797.ctl' & 'GRIBO797.gmp'

10/15/98 Version 1.0 27

GRIB USERM ANUAL

Notice that in the resulting control file (shown below) the ZDEF statement has

changed from the previous example and now contains the two heights found in the
input data set. This results in a slightly different set of variable names as well, because
now the Air Temperature (011) and Wind U-Component (033) fields are treated as part
of the 3-D volume defined by ZDEF instead of individual special levels.

The variable definition lines now also contain a descriptive comment for each
parameter. This is a result of tHe option used, and these comments are taken from
the decoder table specific to this data set.

GRIB0797 .ctl:

dset Ma/nakajima/GRIB/grib/data/GRIB0797.tar
dtype grib

index “"GRIB0797.gmp

undef -9.99E+33

title /a/nakajima/GRIB/grib/data/GRIB0797.data

* pdef isz jsz LCC reflat reflon iref jref stdlatl stdlat2
stdlon delx dely

xdef 61 LINEAR 126 0.200

ydef 51 LINEAR 29 0.200

zdef 2 levels

00002 00010

tdef 2 linear 00Z01jul97 12hr

vars 3

a002102a 0 002,102,000 pressure reduced to msl [Pa]
a011105 2011,105 temperature [K]

a033105 2 033,105 wind u-component [m/s]
endvars

The draw_all.gs ' script will now attempt to display the following fields:

a. Pressure field at level 102 Height 000 for 00Z

Pressure field at level 102 Height 000 for 12Z

Temperature field at level 105 Height 002 for 00Z

Temperature field at level 105 Height 002 for 12Z

Temperature field at level 105 Height 010 for 00Z (does not exist)
Temperature field at level 105 Height 010 for 12Z (does not exist)
Wind-U component field at level 105 Height 002 for 00Z (does not exist)
Wind-U component field at level 105 Height 002 for 12Z (does not exist)
Wind-U component field at level 105 Height 010 for 00Z

J. Wind-U component field at level 105 Height 010 for 12Z

S@ -0 ao0CT

28

Version 1.0 10/15/98

GRIB USERM ANUAL

Notice that because the level used for the ZDEF is now 105, the script attempts to
draw the Temperature and Wind fields at both Heights 002 and 010 even though the
Temperature only exists at Height 002 and the Wind only exists at Height 010. This
results in the GrADS error message 'Cannot contour grid - all undefined values' when
attempting to draw those grids.

GrADS session:

grads -l

Grid Analysis and Display System (GrADS) Version 1.5 Beta-Final
Copyright (c) 1988-1994 by Brian Doty

Center for Ocean-Land-Atmosphere Studies

Institute for Global Environment and Society

All Rights Reserved

GX Package Initialization: Size =11 8.5

ga> run draw_all.gs

GRIB0797.ctl [Varname #enumerated Parm,Lvl,HEIGHT]
=>a002102a 0 002,102,000 pressure reduced to msl [Pa]
drawing a002102a at LEV=0 (T=1,2)

Press enter to continue::::

ZDEF Level has 2 heights, Z ={00002; 00010; }
GRIB0797.ctl [Varname #enumerated Parm,Lvl]1->
==> a011105 2 011,105 temperature [K]

draw a011105 at Z=1 for (T=1,2)

Press enter to continue::::

GRIB0797.ctl [Varname #enumerated Parm,Lvl]1->
==> a011105 2 011,105 temperature [K]

draw a011105 at Z=2 for (T=1,2)

Cannot contour grid - all undefined values

Cannot contour grid - all undefined values

Press enter to continue::::

ZDEF Level has 2 heights, Z ={00002; 00010; }
GRIB0797.ctl [Varname #enumerated Parm,Lvl]1->
==> a033105 2 033,105 wind u-component [m/s]
draw a033105 at Z=1 for (T=1,2)

Cannot contour grid - all undefined values

Cannot contour grid - all undefined values

Press enter to continue::::

GRIB0797.ctl [Varname #enumerated Parm,Lvl]1->
==> a033105 2 033,105 wind u-component [m/s]
draw a033105 at Z=2 for (T=1,2)

Press enter to continue::::

10/15/98 Version 1.0 29

GRIB USERM ANUAL

5.3.3.6 EXAMPLE 6: CREATING A VIS5D DATA SET

The—-v5d option can be included with thgibsimp call to create a Vis5D data set.
Vis5D defines a 5-D data set that includes three spatial dimensions, time, and a
parameter list. Thevsd option requires that a date-time group and a level type ID
(Ivl) be provided. The resulting Vis5D data set will contain all messages from the
input file that match the level type specified, and that are at or later than the specified
date-time.

As previously mentioned, the5d option is only available dribsimp was
compiled with the Vis5D extensions, and requires that the Vis5D system be installed
on the target system.

At the command prompt, type the following:
gribsimp -i $GRIB_ENV/data/GRIB0797.tar -v5d 1997070100 105

GRIBSIMP Execution...

vis5d will process Levels 001 & 102 as Level 105 with Ht=0

Decoding message found at 512 bytes ...

V5DMSG: 97070100 tau=000, Parm=002 Sub=000 LvI=102 (Ht=00000)
Decoding message found at 4608 bytes ...

V5DMSG: 97070100 tau=012, Parm=002 Sub=000 LvI=102 (Ht=00000)
Decoding message found at 8192 bytes ...

V5DMSG: 97070100 tau=000, Parm=011 Sub=000 LvI=105 (Ht=00002)
Decoding message found at 12288 bytes ...

V5DMSG: 97070100 tau=012, Parm=011 Sub=000 LvI=105 (Ht=00002)
Decoding message found at 16384 bytes ...

V5DMSG: 97070100 tau=000, Parm=033 Sub=000 LvI=105 (Ht=00010)
Decoding message found at 20480 bytes ...

V5DMSG: 97070100 tau=012, Parm=033 Sub=000 LvI=105 (Ht=00010)

Entering make_v5d_file:

Time#1 (241032.000000) is 1997/07/01 hr= 0.000000 => '97182' ‘000000
Time#2 (241044.000000) is 1997/07/01 hr=12.000000 => '97182' '120000'
Height[3]= (00000; 00002; 00010;)

Visbd summary:

PRES_MSL P002S000 has Heights [00000 (ht#0) - 00000 (ht#0)] so Nht=1
AIR_TEMP P011S000 has Heights [00002 (ht#1) - 00002 (ht#1)] so Nht=1
U P033S000 has Heights [00010 (ht#2) - 00010 (ht#2)] so Nht=1
Vis5d file created='1997070100.105.v5d'

The resulting output filel997070100.105.v5d ' is ready to be loaded and viewed
with the Vis5D program. Refer to the Vis5D documentation for information on using
Vis5D to visualize data.

5.4 DECODING EXAMPLE

The previous section described how to decode and manipulate GRIB messages using the
stand-alone applicatiogribsimp . The prograndecoder_ex.c provides a starting point

for users who want to write custom decoding programs or include calls to the GRIB
decoding functions from an existing application.

30 Version 1.0 10/15/98

GRIB USERM ANUAL

The programyetgribieee.c is another decoder example showing how to extract just the
data portion of the GRIB message and store it in external IEEE data files.

For more information on how to run these programs, refAptendix D.
5.4.1 PROGRAM DECODER_EX.C

decoder_ex.c is an example program showing how one can decode an input file that has
multiple-GRIB messages by calling the MEL GRIB Software Library functions directly.
The input file used iI$GRIB_ENV/data/GRIB0797 .tar, which contains six GRIB
messages.

The MEL GRIB Software Library functions are used as follows to create a simple decoding
program:

init_gribhdr() /* to create storage for GRIB_HDR structure (do only once) */
Loop {
grib_seek() /* to load next message in input file into GRIB_HDR */
init_dec_struct() /*to clear out the decoder structs */
grib_dec () /*to decode message in GRIB_HDR?*/

[* if successful, float data is returned in a newly allocated array and message info is
returned in decoder structures. */

apply_bitmap() [* only if a Bit Map Section (BMS) is present */
[* free float array allocated by grib_dec here */
} [*close Loop */
free_gribhdr() /*to release storage for GRIB_HDR structure. */

Upon each successful callgdb_seek , a new message will be stored in GRIB_HDR
structure, along with pointers to each section and section lengths for the message. After
grib_dec is called withGRIB_HDRas input, message information is stored in the decoder
structure®DS_INPUT, grid_desc_sec, BMS_INPUT, BDS_HEAD_INPUT , and the

float data is returned in an array allocated witjtih_dec . The data may be used in any
manner at this point. Before looping back to search for the next message the array
containing the float data should be freed. The fundtiem gribhdr() will cleanly
destroyGRIB_HDR, and should always be called prior to exiting the program.

To process all of the messages in an input file, continue loopingytibtibeek returns

the 'no more message' status of 2, or an error occurs. On the firstgciall $eek |, the

offset should be set to zero so that searching begins at the start of the input file. Prior to
subsequent calls tpib_seek , offset should be incremented by the length of the message
just processed. Failure to increment the offset could result in an infinite loop.

Explanation of 'decoder_ex'

a. gribfuncs.h needs to be included since it contains the function prototypes

10/15/98 Version 1.0 31

GRIB USERM ANUAL

b.

C.

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include "gribfuncs.h" /* GRIB library function prototypes
*/
#define TABLE_PATH "./tables" /* default dir of
Lookup Tables */
#define FILL_VALUE -9999.00 /* default for
missing data pts */
/* Main Program Starts Here */
void main (int argc, char **argv) {

Define the variables needed

FILE *fout; [* output file */
char InFile[200]; /* input file name */
char *grib_env_dir; /* holds value of GRIB_ENV environment

variable */
char errmsg[2000]; /* required, error msgs back from Grib
library */
char OutFn[200]; /* name of output file */
inti; [* working var */
int D; /* Decimal Scale Factor */

int decoded_cnt; /* number of messages decoded
successfully */
int nReturn=0; [* return status from Grib_dec */
int Rd_Indexfile=0; /* Zero to decode all msgs in input
file*/
long offset; /* byte offset from beginning of file, for
input files with multiple GRIB messages; */
float *grib_data; /* pointer to block of decoded data */

BMS_INPUT bms; [* structure for bitmap section */
PDS_INPUT pds; /* structure for product definition section
*/

grid_desc_sec gds; /* structure for grid description

section */

BDS_HEAD_INPUT bds_head; /* structure for bds section */

GRIB_HDR *ghl; /* POINTER to the grib header
structure; actual storage is allocated
by the call to init_gribhdr() and is
released by free_gribhdr(). Used to hold
the GRIB message and all of its headers'
length and pointers. The message is put
there by grib_seek */

Initialize variables

errmsg[0] = "\0'; * error buffer */
offset= OL; * byte offset */
decoded_cnt = 0; [* count of messages */

fout = (FILE *)NULL; [* output file */
grib_data= (float *)NULL; /* decoder will create storage */

32

Version 1.0

10/15/98

GRIB USERM ANUAL

d. Set up the name of the file to dec8@RIB_ENV/data/GRIB0797.tar
grib_env_dir= getenv("GRIB_ENV");
if (grib_env_dir==NULL || *grib_env_dir=="\0") {
fprintf(stdout,"Error: Environment variable GRIB_ENV not
defined\n");
exit(0);

}
else sprintf (InFile, "%s/data/GRIBO797.tar",grib_env_dir);

e. Make storage for GRIB header, exit on error
if ((nReturn= init_gribhdr (&gh1, errmsg))) goto bail_out;

f. Create an ASClloutput file, namedecoder_ex.output

sprintf (OutFn, "decoder_ex.output™);

fout = fopen (OutFn, "w");

if (fout == NULL) {
fprintf(stderr,"Failed to open output file %s\n", OutFn);
nReturn = 1; /* error stat */
goto bail_out;

}

g. Loop while there are no errors: Loop until there are no more messages left in the
input files.

for (offset = OL; nReturn == 0; offset += gh1l->msg_length)
{

® American Standard Code for Information Interchange

10/15/98 Version 1.0 33

GRIB USERM ANUAL

h. Call grib_seek 'to find the next GRIB messageimfile ' starting from the byte
‘offset’. If successful, return the entire message and all its information in structure
grib_hdr . Ifit fails, nReturn is non-zero andrrmsg contains the error

message.
if (nReturn= grib_seek(InFile, &offset, Rd_Indexfile, gh1l,
errmsg))

fprintf(stdout,"Grib_seek returned non zero stat (%d)\n",

nReturn);
if (nReturn == 2) break; /* End of file error */
else goto bail_out; /* abort if other error */

}

I. Check for warning message frayib_seek
buffer, and then find next message
if (errmsg[0] !="0"
{/* NO errors but got a Warning msg from seek */
fprintf(stdout,"%s; Skip Decoding...\n",errmsg);

; if present, print it out, clear error

errmsg[0]="0"; * reset error to continue */
ghl->msg_length = 1L; /* set to 1 to bump offset up */
continue;

}

J. Abort if this message has bad length; if zero length, skip this message, find the next
message in the input file
if (gh1->msg_length < 0) {
fprintf(stderr, "Error: message returned had bad length
(%ld)\n",gh1l->msg_length);
goto bail_out;

}
else if (ghl->msg_length == 0) {
fprintf(stdout,"msg_lenth is Zero, set offset to 1\n");
ghl->msg_length = 1L; /* setto 1 to bump offset up */

continue;
}
k. Clear out the GRIB input structurgsl¢_input, grid_desc_sec,
bms_input, bds_head_input)

init_dec_struct(&pds,&gds,&bms,&bds_head);
fprintf(stdout,"Decoding message found at %ld bytes
..\n" offset);

l. Decode the message currently in GRIB header; float array must be null, decoder
will allocate storage for it. If successfplls, gds, bds_head, bms,
grib_data are returned filled
grib_data= (float *) NULL;
if (nReturn = grib_dec ((char *)ghl->entire_msg, &pds,
&gds, &bds_head, &bms, &grib_data, errmsg)) goto bail_out;

34

Version 1.0 10/15/98

GRIB USERM ANUAL

decoded_cnt++; /* keep count */

m. If the bitmap section (bms) is present in the message then go apply the bitmap to
the float array. If successful, the float array is returned expanded to the full #rows

by #cols for this grid. The missing data points are filled withfilhealue'

defined on top

if (boms.uslength>0 &&
(nReturn=apply_bitmap(&bms, &grib_data, FILL_VALUE,
bds_head,errmsg)))
goto bail_out;
kk
THE FLOAT DATA ARRAY IS READY TO GO
DATA MAY BE USED IN ANY WAY HERE
PUT CODE FROM HERE TO <<END MARKER>>

In this example, the contents of each of the defined header sections of this message
along with the first 100 elements in the float data array are displayed on standard

output. This is achieved via the callpet 'inp_struct '. Then the data array
which was

content is appended to the text file nardedoder_ex.output,
previously opened.

fprintf(stdout, "\n\t>>> Content of GRIB Msg #%d =\n",
decoded_cnt);
prt_inp_struct(&pds, &gds, &bms, &bds_head, &grib_data);

fprintf(fout,"decoded GRIB Msg #%d from
$GRIB_ENV/data/GRIB0797.tar\n\n", decoded_cnt);

fprintf(fout, " dtg= %02u%02u%02u%02u Fcstper=%03u\n",
pds.usYear, pds.usMonth, pds.usDay, ds.usHour,pds.usP1);

* check for NRL's Sub-Parameter Usage */

if(pds.usCenter_sub==99||pds.usCenter_id==128||pds.usCenter

_id==129)
&& (pds.usParm_id > 249 && pds.usParm_sub!=999))
fprintf(fout,” Parmid=%03u (Sub-Thbl '%c')",
pds.usParm_id-250 + ‘A", pds.usParm_sub);
else fprintf(fout,” Parmid=%03u (Main Thl), ",
pds.usParm_id);
fprintf(fout,"Levelid=%03u, Gridld=%03u, IvI1=%05Id\n",
pds.usLevel id, pds.usGrid_id, pds.usHeightl);
fprintf(fout,” Decimal Scale Factor = %d\n",
pds.sDec_sc_fctr);

NOTE: The data are printed up to the precision to which the
message was encoded, which is defined by the 'decimal scale
factor' in the Product Definition Section.

D = (int) pds.sDec_sc_fctr;
if (D >=0)
for (i=0; i<bds_head.ulGrid_size; i=i+5)

10/15/98 Version 1.0

35

GRIB USERM ANUAL

fprintf(fout,"%5d: %210.*f %210.*f %210.*f %210.*f
%10.*\n",

i+1, D, grib_data([i], D, grib_data[i+1],

D, grib_data[i+2], D, grib_data[i+3], D,

grib_data[i+4]);
else

for (i=0; i<bds_head.ulGrid_size; i=i+5)

fprintf(fout,"%5d: %210.0f %210.0f %210.0f %10.0f
%10.0f\n", i+1, grib_data]i], grib_data[i+1],
grib_data[i+2], grib_data[i+3], grib_data[i+4]);
<<< END MARKER >>>
STOP SUBSTITUTION HERE
RETAIN THE REMAINING CODE

kkkkkkkkkkkhkkkkkkkkkhkhkkkkkkhkkkhkkkkkkkhkkkkkkkkkhkkkkkkkhkk

n. Release the storage allocated for the float array that was reserved witlidbe
command in the call tgrib_dec

if (grib_data!=NULL) { free(grib_data); grib_data = NULL; }
0. Loop again to get the next message in the file.
} I* FOR-loop */

p. This point is reached only if there were no errors. So now change the exit status to
no error

nReturn = 0;

g. This section of the code is entered whether the program finished decoding all
messages, or if it aborted for some reason. If the program aborted, then the error
buffer will contain the cause; print it out;

bail_out:

if (errmsg[0] !="\0") fprintf(stderr,"\n***ERROR:
%s\n" ,argv[0], errmsg);

if (grib_data!=NULL) free(grib_data);

if (fout '= NULL) fclose (fout);

r. Release the GRIB header structure.

WARNING : DO NOT OMIT THIS STEP.

free_gribhdr (&gh1l);
exit (nReturn);

}

To see how to rudecoder_ex and its results, se&ppendix D.

36 Version 1.0 10/15/98

GRIB USERM ANUAL

5.4.2 PROGRAM GETGRIBIEEE.C'

This program shows how to extract and save just the data portion of the GRIB message
in an external file. The result is a Binary 32-bit IEEE format file, WITHOUT the 4-

byte Header and Trailer. To see how these IEEE files are can be loaded into a C or
Fortran program, refer tAppendix E.2

Explanation obetgribieee

a. Define all of the Include files and global variables:

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#include "dprints.h" /* for all debug printing */

#include "gribfuncs.h” /* all GRIB func prototypes */

#define FILL_VALUE -9999.00 /* Value for missing datapts */
char errmsg[2000]; /* leave it big! used by Grib Library */
GRIB_HDR *gh= NULL,; /* grib header block, filled by Encoder*/

b. Define local variables in Main function:

void main (int argc, char **argv)

{ |

int i;

char *grib_env; /* pts to Environment Variable */
char InFile[200]; /* current input GRIB filename */

char ieee_fn[201]; /* current output leee filename */

int nReturn=0; /* return status from grib_dec */

int S_stat; [* status from grib seek function */

int n;

int Read_Index=0; /* Zero so Seek will search until Msg*/
unsigned long msg_length = 0O; /* total length of message */

long offset; [* offset within the multiple GRIB file,

indicating end of current msg relative to the top of file*/
float *grib_data=NULL; /* array of decoded data values */
GRIB_HDR *gh1;/* holds info on msg returned from Seek */

BMS_INPUT bms; /* input structure for bitmap section */
PDS_INPUT pds; * product definition section */
grid_desc_sec gds; [* grid description section */
BDS_HEAD_INPUT bds_head; /*input structure for bds
section */

void prt_inp_struct ();

FILE *fpo, *flist;
c. Clear out name of input file variable
InFile[0]=\0";

d. Parse command line arguments, Expecting List filename as the argument

if (arge!=2 || (argv[1][0]=="0" || argv[1][0]=="-)) {
fprintf(stderr, "Usage: %s List_fn \n",argv[0]);
exit(0); }

10/15/98 Version 1.0 37

GRIB USERM ANUAL

e. Open list file for reading, exit if error

if ((flist = fopen(argv[1], "r")) == NULL)
{ fprintf(stderr,
"Unable to open List file %s;\nAbort Program\n", argv[1]);
exit(1); }

fprintf(stdout,"List file is '%s"\n", argv[1]);

f. Make storage for GRIB header structure

if (init_gribhdr (&gh1, errmsg))

{ fprintf(stderr,"%s: %s\nAbort Program\n”, argv[0],
errmsg);

fclose(flist);exit(1);

g. Loop while not end of List file and no errors exist

while (!ferror(flist) && !feof(flist))
{

(1) Read next entry from Listing file. Entry is name of the next GRIB input file

if ((n=fscanf (flist, "%s", InFile)) I= 1) break;
fprintf(stdout,"\nNext Infile= %s\n", InFile);

(2) Keep looping untilgrib_seek’ returns error or no more message status
for (offset=0L, errmsg[0]="0";
I (S_stat= grib_seek(InFile, &offset, Read_Index, ghl,

errmsg));
offset += (msg_length+ 1L), errmsg[0]="0"

(a) If the message has zero length, loop toge#ll seek again.
Otherwise, do the following:

if ((msg_length = ghl->msg_length) > 0)
{

fprintf(stdout, "Decoding message found at %ld
bytes ...\n",
offset);

(b) Initialize decoder structures
init_dec_struct(&pds, &gds, &bms, &bds_head);

(c) Perform GRIB decoding, results in internal PDS, Grid Definition
Section (GDS), Binary Data Section (BDS), Bitmap Section (BMS)
structures and new float data array

grib_data= (float *) NULL;

if (NReturn = grib_dec((char*)ghl->entire_msg,
&pds, &gds, &bds_head, &bms, &grib_data, errmsg))
{

38

Version 1.0 10/15/98

GRIB USERM ANUAL

fprintf(stderr, "%s %s: %s\n", argv[0], InFile, errmsg);
display_gribhdr(ghl);
break;

}

(d) Applying bitmap section to data if bitmap section is present

if (bms.uslength>0)

if (nReturn=apply_bitmap (&bms, &grib_data, FILL_VALUE,
&bds_head,

errmsg))

{ fprintf(stderr, "%s %s: %s\n", argv[0], InFile,

errmsg);

break;

}

(e) Create output file to hold the data, naiedrile.IEEE

Assumption: Only one GRIB message per input file

sprintf (ieee_fn, "%s.IEEE",
(strrchr(InFile,'") ? strrchr(InFile,'/") + 1 :
InFile));

if (! (fpo = fopen(ieee_fn, "wb"))) {
fprintf(stderr, "Cannot open %s for writing\nAbort
Program;\n”,
ieee_fn);
fclose(flist);
exit (1);
}

if (fwrite(grib_data, sizeof(float),
bds_head.ulGrid_size, fpo)

I= bds_head.ulGrid_size)

{

fprintf(stderr,

"Failed to write out %d float elements to %s\nAbort
Program;\n",

bds_head.ulGrid_size, ieee_fn);

fclose(fpo); fclose(flist); exit(1);

fprintf(stdout,"leee output= %s\n", ieee_fn);
fclose(fpo);

(N Release storage of the float data array

if (grib_data!=NULL) { free(grib_data); grib_data =
NULL;}

}

10/15/98

Version 1.0 39

GRIB USERM ANUAL

} I* FOR grib_seek loop*/

(3) If last call to seek GRIB returnéabrrupted len' error, then print as
much of the GRIB header structure as possible;

if (S_stat I= 0 && errmsg[0]'= "\0")
fprintf(stderr, "%s %s: %s\n", argv[0], InFile, errmsg);

(4) Else, loop to get next entry from List file

}

h. Perform cleaning up and exit

fclose(flist);
if (grib_data!=NULL) { free(grib_data); grib_data = NULL; }
free_gribhdr (&ghl); /* alloced in ENcode() */
exit(0);
}

To see how this program is executed, refekgpendix D.2.

5.5 GRIB ENCODING

Encoding a gridded data field into the GRIB format is accomplished by filling a defined set

of input structures and calling a sequence of library functions. This process is quite simple
for a single gridded field loaded into a program. The challenge is in developing consistent
mapping from the local data representation scheme to that used in GRIB. To fully
understand how GRIB will represent gridded data, one must understand the simple packing
scheme employed, the grid systems defined, and the use of enumerated tables of descriptive
information explained in thé&/MO Manual 306 Appendix A also provides an overview of

the structure of a GRIB message.

5.5.1 INTRODUCTION

Before beginning the process of encoding data in GRIB, first verify that GRIB is the
proper transfer format for the data. A GRIB message describes one 2-D grid of data
represented on a regularly spaced, definable geometry (i.e., a grid system that is
computable by parametric equations). Randomly spaced data, such as observation data
or a finite element grid, should be sent in Binary Universal Form for Representation of
meteorological data (BUFR). 3-D volumes of data can be sent in GRIB (one 2-D grid

at a time), assuming that the above grid criteria is met and that the vertical coordinate
system is defined by discrete surfaces.

Once the decision has been made to use GRIB, the steps involved in producing GRIB
messages are:

a. Make a list of all fields to be encoded

40 Version 1.0 10/15/98

GRIB USERM ANUAL

b. Map all locally defined parameter, level, geometry, and model names to GRIB
code tables, defining new codes as required

c. Transform the geometry representations to the GRIB scheme

d. Develop a program that can access all of the required fields from the local data
management system one 2-D grid at a time, and can perform any necessary unit
conversions and/or geometry transformations as required.

e. Add the GRIB library encoding structures and function calls to the above
program
f. Select an output file name convention for the GRIB messages

Note that the first three of these a@ programming steps. It is very easy to quickly
develop a GRIB encoding system that goes through the mechanics of creating a GRIB
message. However, without the information developed in Steps a-c, there will be no
systematic representation of the data in the GRIB messages. Therefore, be sure to
spend the time performing Steps a-c prior to developing the GRIB encoding system.
The details of performing those important steps are cover@edtion 5.5.2 Some
encoding examples to illustrate Steps d-f are presentgeciiion 5.5.3

5.5.2 DESCRIBING DATA

The GRIB format treats data as a collection of 2-D gridded fields, each with its own
complete set of descriptive information. Therefore, if the local data management
system does not treat data in this way, decide how to split data into 2-D grid fields. It

is important to determine this now, before proceeding, because all of the discussions
and examples to follow assume that the data to be encoded are made up of a collection
of 2-D grids.

To completely describe the data set(s), the following information must be encoded for
each 2-D gridded data field:
a. Parameter Name and Units
Level Type and Units
Process used to generate field (Model)
Geometry information
Accuracy of data
Date and Time when field is valid

-0 Qo0 C

10/15/98 Version 1.0 41

GRIB USERM ANUAL

Once this list is developed, all of the information required to create GRIB tables for
the site and fill the input structures required for encoding. The most difficult task in
setting up a GRIB encoding program is resolving how to systematically determine all
of the above information for each 2-D gridded field as it is processed, and mapping
this information to the format of the GRIB input structures.

Part of this process is defining GRIB codes to represent the various parameters, levels,
models, and geometries that will be used. The GRIB library includes functions for
loading encoding tables that define mappings from local naming conventions to GRIB
table codes. For example, suppose a temperature field needs to be encoded, accurate
to .01 degrees, which is referenced in the local data set by thaitetemp' and

is stored in degrees Celsius. Referring to the GRIB Parameter Table (Code Table 2 in
the WMO Manual 30§ the code for temperature data is determined to be '011' and the
standard GRIB units are degrees Kelvin. In this case, enter a line in the encoding table
as follows:

air temp O 011 1.0 2730 3

This sets up a parameter mapping that instructs the encoding program to use code '011'
in the main table (0) with a scale of 1.0, an offset of 273.0, and a decimal scale factor

of 3 when it encounters a field with parameter nartzér=temp’ . Note that the

scale and offset included here are not included in the GRIB message, and it is expected
that these will be applied to the data array prior to sending the array to the encoding
function.

The decimal scale factor is used to scale the data up by powers of 10 to set the desired
encoding precision. In this case, a 3 implies that the encoder will scale the data up by
1000 prior to truncating the data to integers, thereby preserving three decimal places of
precision in the data. The decimal scale factor should be set to one order of magnitude
beyond the desired precision of the data to be encoded.

The above process is repeated in a similar way for all level types, model, and geometry
definitions in the local data management system. Level types also include scale and
offset values to convert the units defining the levels to standard GRIB units. Refer to
Section 5.6.1.Zor complete details of setting up an encoding table.

After completing the mappings from the local parameter, level type, model, and
geometry names to GRIB codes, set up grid definitions for the fields. Although the
GRIB standard does not mandate a grid definition section in the message, it is highly
recommended because it makes each message completely self-describing. The GRIB
grid definition types have been kept internal to the encoding functions, so that the user
can always use the same input geometry structure without having to worry about
which grid definition type to use. This generic input geometry strucBEOM_IN is
described in complete detail Appendix E.5.7.

42

Version 1.0 10/15/98

GRIB USERM ANUAL

There are a number of ways to handle the inclusion of geometry information in GRIB
messages. The most generic way, and consequently the most complicated, is to write a
function that loads local geometry information and maps it tGG&@M_INStructure

as the encoding program processes the data. With this method, the addition of new
geometries to the local data management system requires no additional work.
However, if only a small number of geometries need be considered, the library
supports an external geometry file that stores the required elementsGE@M IN
structure. This can be used to build a database of geometries already in the required
format that can be loaded using theenc_geom library function. Refer to file
$GRIB_ENV/data/encoder_ex2.geom for details on the format of the external
geometry file format. Encoding Example 2, describe8antion 5.5.4.2provides an
example using thel_enc_geom() library function.

5.5.3 ENCODING EXAMPLES

It is assumed that the information discusse8i@ntion 5.5.4s somehow stored in
association with the gridded data fields. It does not matter whether the information is
stored in relational database tables or if the information is simply implied from the
local file names, as long as the encoding program is able to determine the information
for each 2-D grid.

Three example programs are provided to illustrate the basic use of the encoding
functions included in the library.

5.5.4 ENCODING CODE EXAMPLES

To create a GRIB message, the user needs to pass to the encoder the array that holds
the floating point data and related information stored in the three encoder structures:
GEOM_IN, DATA_INPUT, andUSER_INPUT How these items are to be initialized
depends upon the user. The following examples illustrate different ways to initialize
the required inputs.

5.5.4.1 EAMPLE 1 - ENCODEREX1

The first example program illustrates the encoding process in its most simplistic form.
The three required input structul@BEOM_IN DATA_INPUTandUSER_INPUT are
manually filled and the input float array is loaded from an IEEE file .

Input file:$3GRIB_ENV/data/IEEE.input
Output file: 075_237_ 1997070100012 0011 105.00002.0.grb

EXPLANATION OF encoder_exl 'PROGRAM:

10/15/98 Version 1.0 43

GRIB USERM ANUAL

a. Required includes and defines:

#include "gribfuncs.h" /* Library function prototypes */
#define INPUT_IEEE_FN "data/IEEE.input" /* to read in */

main ()

{
b. Define variables:
FILE *fieee; [* file pointer to IEEE data file */
GRIB_HDR *gh=0; /* will hold encoded msg & its info

initialized to NULL */
DATA_INPUT data_input; /* input header struct for Encoder */
GEOM_IN geom_in; /* geometry descript for Encoder */
USER_INPUT user_input; /* user input for Encoder */
char *grib_env; /* defn of Environ var GRIB_ENV */
char input_fn[200]; /* full path to the ieee file */
char errmsg[2000]; /* at least 2000 bytes for err msg*/
char out_fn[50]; /* name of output filename */
float *flt_arr=NULL; /* float data array,init to null*/
float min, max; /* min and max value of data */
int cnt,i; [* working variables */

c. Initialize the encoder structures wiitit_enc_struct . This function is of type
Void and returns nothing.

init_enc_struct (&data_input, &geom_in, &user_input);

d. Fill in the structureSEOM_IN, DATA_INPUT,and USER_INPUT :

strcpy (geom_in.prjn_name, "spherical");

geom_in.nx= 61; /* num of cols */

geom_in.ny= 51; /* num of rows */
geom_in.x_int_dis=22.; /* X-dir grid length, in meters */
geom_in.y_int_dis=22.; /* Y-dir grid length, in meters */
geom_in.parm_1=0.2; [* Latitude spacing */
geom_in.parm_2= 0.2; [* Longitude spacing */
geom_in.parm_3=-1.0; /* Unused for Spherical */
geom_in.first_lat= 34.; /* Lat of 1st pt, in degrees */
geom_in.first_lon=124.; /* Lon of 1st pt, in degrees */

geom_in.last_lat= 0; /* Lat of last pt, in degrees */
geom_in.last_lon= 0; /* Lon of last pt, in degrees */
geom_in.scan= 64; [* pts scan in +i, +j, adjcent pts

in i-dir consecutive */
geom_in.usRes_flag=0; /* Earth spherical, UV rel. to
East/Northerly Dir*/

data_input.usProc_id=75; /* Model/Generating Process ID
(TabA) */

data_input.usGrid_id= 237; /* Grid Identification (Table B)*/

data_input.usParm_id=11; /* GRIB parameter id */

Version 1.0 10/15/98

GRIB USERM ANUAL

data_input.usParm_sub_id= 0;/* GRIB parameter sub-id */
data_input.usLevel_id=105; /* GRIB level id */
data_input.nLvl_1= 2; /* 1stlevel value-scaled to an

integer*/
data_input.nLvl 2= 0; /* 2nd level value-scaled to an

integer*/
data_input.nYear= 1995; /* year of data */
data_input.nMonth=7; /* month of year*/
data_input.nDay= 1; /*day of month */
data_input.nHour=0; /* hour of day */
data_input.nMinute= 0; /* minute of hour */
data_input.nSecond= 0; /* second of minute */
data_input.usFcst_id=1; /* HOURS Forecast time unit id

Table 4*/
data_input.usFcst_perl=12; /* forecast time 1 (tau) */
data_input.usFcst_per2= 0; /* forecast time 2 (tau) */
data_input.usTime_range_id= 0; /*Time range indicator-Table 5*/
data_input.usTime_range_avg= 0; /* Number in average */
data_input.usTime_range_mis= 0; /* Number missing from avg */
data_input.nDec_sc_fctr= 1; /* Decimal scale factor */

user_input.chCase_id="0"; /* User defined Case ID */
user_input.usParm_tbl=2; /* GRIB Table Version Number*/
user_input.usSub_tbl=1; /* Local Table Version Number*/
user_input.usCenter_id= 128;/* ID of Orig Center (Table 0) */
user_input.usCenter_sub= 0; /* Sub-Table Entry for Orig Ctr
(Tbl 0)*/
user_input.usTrack_num= 0; /* Tracking ID for data set*/
user_input.usBDS_flag= 0; /* Binary Data Section Flag (Table
11) ¥/
user_input.usGds_bms_id=128; /* GDS present but not BMS */
user_input.usBit_pack_num= 0; /* No. of bits into which data
is packed. ZERO to encode in Least number of bits */

e. Create a one-dimensional array type float, of dimension specifiedGEd _IN
structure:
flt_arr = (float *) malloc(geom_in.nx * geom_in.ny
*sizeof(float));
if (flt_arr == NULL) {
fprintf(stderr,"Failed to allocate storage for Float

array\n");
exit(1);
}
f. Fill Float array with the data for the entire grid point from element O to
(geom_in.nx * geom_in.ny)-1 . Data elements should be stored in the order

specified by the Scan modedom_In.scan). Here, data is loaded from
$GRIB_ENV/data/IEEE.input

10/15/98 Version 1.0 45

GRIB USERM ANUAL

grib_env = getenv ("GRIB_ENV");

if (grib_env == NULL || *grib_env =="0") {
fprintf(stderr,"Environment variable GRIB_ENV not
defined\n");

exit(1);

}

sprintf (input_fn, "%s/%s", grib_env, INPUT_IEEE_FN);
fieee = fopen (input_fn, "rb");
if (fieee == NULL) {
fprintf(stderr,"Failed to open '%s"\n", input_fn);
if (flt_arr != NULL) free(flt_arr);
exit(1);
}
else {
if (fread((void*)flt_arr, sizeof(float),
geom_in.nx*geom_in.ny, fieee) = geom_in.nx*geom_in.ny) {
fprintf(stderr,"Failed to read 'ieee.input’\n™);
if (flt_arr = NULL) free(flt_arr);
fclose (fieee);
exit(1);

fclose (fieee);

}

. Prepare &RIB_HDRstructure via call tinit_gribhdr . The GRIB Header

structure will hold the encoded message and its information. Check the return value
of init_gribhdr . Zero indicates success, otherwise the cause of failure is in
stringerrmsg .
if (init_gribhdr (&gh, errmsg) != 0) {

fprintf(stderr, "%s", errmsg);

free (flt_arr); /* release storage first */

exit (1);
}

. Callgrib_enc to encode message with the three structure and float array all filled.

Upon return, check return status of functgpib_enc : Zero indicates success,
otherwise the cause of failure is in strenmgmsg.
if (grib_enc(data_input, user_input, geom_in, flt_arr, gh,
errmsg) !=0) {
fprintf(stderr,"Abort; error=%s\n",errmsg);
if (flt_arr 1= NULL) free(flt_arr);
free_gribhdr (&gh);
exit(1);
}

46

Version 1.0 10/15/98

GRIB USERM ANUAL

I. Call function to create the default flename for the encoded message based on the
information available in thBATA_INPUTandUSER_INPUTSstructures. The
filename is created and returned in the stomgfn . Note thabut_fn must be
long enough to support the created name (50 characters is adequate).

make_default_grbfn (data_input, user_input, out_fn);

. Save the encoded message into an external file with the default name. Check return
value ofgribhdr2file . Zero indicates success, otherwise the cause of failure is
in stringerrmsg .

if (gribhdr2file (gh, out_fn, errmsg) != 0) {
fprintf(stderr,"Abort; error= %s\n", errmsg);
if (flt_arr I= NULL) free(flt_arr); /* rel array */
free_gribhdr (&gh); /* release grib hdr */
exit(1);
}

k. Before exiting, release storage:

if (flt_arr 1= NULL) free(flt_arr);
free_gribhdr (&gh);

exit(0);

}

5.5.4.2 EAMPLE 2 - ENCODEREX2

In this example, the three input structures are loaded using the library functions
provided, which read the information from external files. Note that these functions
MUST be called prior to the call tgrib_enc'

Input files: $GRIB_ENV/config/encoder.config
$GRIB_ENV/data/encoder_ex2.geom
$GRIB_ENV/data/encoder_ex2.info
$GRIB_ENV/data/IEEE.input

Output file: 075_237_1997070100012_0011_105.00002.1.grb
EXPLANATION OF THE éncoder_ex2' PROGRAM:

a. Required Includes and Defines:

#include "gribfuncs.h" /* Library function prototypes */
#define CONFIG_FN "config/encoder.config”

#define GEOM_FN "data/encoder_ex2.geom"
#define INFO_FN "data/encoder_ex2.info"
#define IEEE_FN "data/IEEE.input"

main () {

b. Define variables needed:

GRIB_HDR *gh=0; /*will hold encoded msg & its info */
DATA_INPUT data_input; /* input head struct for Encoder */

10/15/98 Version 1.0 47

GRIB USERM ANUAL

GEOM_IN geom_in; /* geometry descrip for Encoder */
USER_INPUT user_input; /* user input from input.dat for Encoder*/
char errmsg[2000]; /* buffer to hold error message */

char input_config[200]; /* name of input filename */
char input_geom[200]; /* name of input filename */
char input_info[200]; /* name of input filename */
char input_ieee[200]; /* name of input filename */
char *grib_env; [* working variable */
char out_fn[50]; /* name of output filename */

float *flt_arr=NULL; /* float data array, init null*/
float min, max; /* min and max value of data */
int cnt, i; /* working variables */

c. Getthe Environment Variab@®@RIB_ENVfirst:
grib_env = getenv ("GRIB_ENV");
if (grib_env == NULL || *grib_env =="0") {
fprintf(stderr,"Environment variable GRIB_ENV not
defined\n®);
exit(1);
}

d. Clear out the 3 encoder structures:
init_enc_struct (&data_input, &geom_in, &user_input);

e. Build the names for the 3 input files to load:
sprintf (input_config, "%s/%s", grib_env, (char *)CONFIG_FN);
sprintf (input_geom, "%s/%s", grib_env, (char *)GEOM_FN);
sprintf (input_info, "%s/%s", grib_env, (char *)INFO_FN);
sprintf (input_ieee, "%s/%s", grib_env, (char *)IEEE_FN);

f. Call the three library functions to load these three files into the three encoder
structuresGEOM_IN, DATA_INPUT, USER_INPUT . Check each function's return
value for error: zero indicates success, else error message is stareci:

if (Id_enc_geomfile (input_geom, &geom_in, errmsg) != 0 ||

Id_enc_ffinfo (input_info, model_id, &data_input, errmsg) != 0 ||

Id_enc_config (input_config, &user_input, errmsg) '=0)

{

fprintf(stderr,"Fatal error= %s\n", errmsg); exit(1);

}

g. Make storage for a one-dimensional array of type Float. The array needs to be
large enough to support the grid size showSEHOM_IN
if (I(flt_arr = (float *)malloc(geom_in.nx*geom_in.ny
*sizeof(float)))){
fprintf(stderr,"Failed to malloc Float array\n");
exit(1);
}
h. Now call library function to load the IEEE file into float array. Again check return
value from function, non-zero means error occurred:
if (Id_enc_ieeeff (input_ieee,flt_arr,geom_in.nx*geom_in.ny,
errmsg)¥{

48

Version 1.0 10/15/98

GRIB USERM ANUAL

fprintf(stderr,"Failed to load IEEE file, ermsg=%s\n",
errmsg);
exit(1);
}

I. Allocate storage foGRIB_HDRstructure. Check return status for error:

if (init_gribhdr (&gh, errmsg)) {
fprintf(stderr,"Abort; error=%s\n", errmsg);
if (flt_arr !'= NULL) free(flt_arr);
exit(1);
}

J]. Call encoder routine passing it the 3 structures and the float array. If successful, the

encoded message is returned in@B_HDR Check return status for non-zero
status:

if (grib_enc(data_input, user_input, geom_in, flt_arr, gh,
errmsg) = 0)

fprintf(stderr,"Abort; error=%s\n",errmsg);
if (flt_arr '= NULL) free(flt_arr);
free_gribhdr (&gh);
exit(1);

}

k. Form the default name for GRIB file using information available in the structures
DATA_INPUTandUSER_INPUT The name is returned in stringt_fn

make_default_grbfn (data_input, user_input, out_fn);

|. Save the encoded messag&RIB_HDRout to external file under the default GRIB
filename. Check return status for non-zero status:

if (gribhdr2file (gh, out_fn, errmsg) != 0)
{
fprintf(stderr,"Abort; error= %s\n", errmsg);
if (flt_arr !'= NULL) free(flt_arr);
free_gribhdr (&gh);
exit(1);
}

m. Free up storage used before exiting:

if (fit_arr 1= NULL) free(flt_arr);
free_gribhdr (&gh);
exit(0);

}

10/15/98 Version 1.0 49

GRIB USERM ANUAL

5.5.4.3 EAMPLE 3 - ENCODEREX3

This third example shows how to encode a list of GRIB messages from the user-
provided Geometry, Model, and list file containing names of the IEEE files. Each
encoded message will be saved to an external file using the default GRIB file name
provided by the library. This example program represents a realistic GRIB encoding
system in which multiple geometry definitions can be stored in a flat-file database and
referenced by name, and an external encoding table is used to maintain local
definitions of parameter and level types, models, and geometries. This program
represents an early version of a GRIB encoder used at the NRL, Monterey MEL
Resource site.

RUNNING 'encoder_ex3 '

This program expects three command line arguments: Model type, Geometry
name, and List filename.

encoder_ex3 NORAPS2 ptmugu_61x51
$GRIB_ENV/data/encoder_ex3.list

Input files:
* $GRIB_ENV/config/encoder.config

File holding the configuration information for the encoder.
* $GRIB_ENV/data/'$GEOM'.geom

Geometry information file. Since the command line specifies geometry
ptmugu_61x51 , program will automatically look for the file

'$GRIB_ENV/data/ptmugu_61x51.geom'
* 3$GRIB_ENV/data/encoder_ex3.list

This file contains names of the input IEEE files to be disedencoding.

Each entry appears on a single line and may not contain a path. The program
automatically tacks the paiGRIB_ENV/data/ in front of each file name.

Here is the listing oBGRIB_ENV/data/encoder_exa3.list' =

ieee.pres.msl.2.0.1997070100.000
ieee.pres.msl.2.0.1997070100.012
ieee.wnd_ucmp.ht_sfc.10.0.1997070100.000
ieee.wnd_ucmp.ht_sfc.10.0.1997070100.012

* |EEE input files

These files hold the IEEE data used for each message to encode. The
filename format is:
"ieee."parmname.lvitype.Ivil.lvi2.yyyymmddhh.tau

as listed in the list file. All input files must resides@RIB_ENV/data/.
Output files:

50

Version 1.0 10/15/98

GRIB USERM ANUAL

From the four input "ieee." entries in the Listing files, four GRIB messages are
encoded and they are stored in separate files =

016_054_1997070100000_0001_102.00002.3.grb
016_054_1997070100000_0033_105.00010.3.grb
016_054_1997070100012_0001_102.00002.3.grb
016_054_1997070100012_0033_105.00010.3.grb

EXPLANATION OF THE 'encoder_ex3 'PROGRAM:

a. Required includes and defines:

#include <stdio.h>

#include <stdlib.h>

#include "gribfuncs.h" /* Library function prototypes */
#include "grib_lookup.h" /* Conversion Info */

#include "dprints.h" [* Debug printing info*/

#define CONFIG_FN "config/encoder.config”

extern PARM_DEFN db_parm_tbl[]; /* holds parm conversion info */
extern LVL_DEFN db_IvI_tbl[]; /* holds level conversion info */
extern MODEL_DEFN db_mdl_tbl[]; /* holds model conversion info */
extern GEOM_DEFN db_geom_tbl[]; /* holds Geom conversion info */

b. Program source:

main (int argc, char *argv[])

{

(1) Define the local variables.

FILE *flist = NULL; /* List file pointer */

GRIB_HDR *gh=0; /*will hold encoded msg & its info*/
DATA_INPUT data_input; /* Encoder input header structure */
GEOM_IN geom_in; /* geometry description for Encoder*/
USER_INPUT user_input;/* Encoder user input from input.dat */
char *geom_name; /* cmd line input */

char *model_type; /*cmd line input */

char *list_fn; /* name of List filename */

char *grib_env; /* working variable */

char line[100],temp[100],dummy[100]; /* working vars */
char *pl,*p2;

char errmsg[2000]; /* buffer to hold error message */

char config_fn[200]; /* name of input filename */

char lookup_fn[100]; /* name of Conversion file */

char geom_fn[100]; /* name of Geometry file */

char ieee_fn[200]; /* name of input filename */

char out_fn[50]; /* name of output filename */

float *flt_arr=NULL; /* array to hold float data, init

to null */
float scl,ref,min, max; /* min and max value of data */
int id,cnt,i; [* working variables */
int quit; [* set to quit */

10/15/98 Version 1.0 51

GRIB USERM ANUAL

int

stat; [* working var */

unsigned long uldtg;

(2)

3)

Parse the Command Line Arguments, expecting 3.

if (argc '=4) {

fprintf(stderr,"Usage= %s Modeltype Geomname
List_fn\n\n", argv[0]);

exit(1);

fprintf(stdout,"\nStarting %s\n", argv[0]);

model_type = argv[1]; geom_nhame= argv[2]; list_fn=
argv(3];

Check Environment V&BRIB_ENV' , exit if not available.

grib_env = getenv ("GRIB_ENV");

if (grib_env == NULL || *grib_env =="0") {
fprintf(stderr,"Environment variable GRIB_ENV not
defined\n");

exit(1);

}
fprintf(stdout,"GRIB_ENV = %s\n", grib_env);

(4)

(5)

(6)

Clear out the three internal Encoder structures.

fprintf(stdout,"Clear out the 3 Encoder structures \n");
init_enc_struct (&data_input, &geom_in, &user_input);

Load the Encoder Configuration file.

sprintf (config_fn, "%s/%s", grib_env, (char
*)CONFIG_FN);

fprintf(stdout,"Loading Config file= %s\n", config_fn);

if (Id_enc_config (config_fn, &user_input, errmsg) !=0)

fprintf(stderr,"Fatal error= %s\n", errmsg);
exit(1);

Build Lookup filename then load it. This file contains the information
needed on Parameters, Models, Geometries, and Levels.

sprintf (lookup_fn, "%s/tables/neons2grib.%d.%d",
grib_env,
user_input.usParm_tbl, user_input.usSub_tbl);
fprintf(stdout,"Loading Lookup file= %s\n", lookup_fn);

if (Id_enc_lookup (lookup_fn, errmsg)) {
fprintf(stderr,"Fatal error= %s\n", errmsg);
exit(1);
}

52

Version 1.0 10/15/98

GRIB USERM ANUAL

(7) Check for the input Geometry provided by the user. Quit if it does not
match any of the geometries loaded from the Table file; else note the
ID of the matched Geometry Name.

for (id=0; id < NGEOM,; id++) if (Istrcmp
(db_geom_tbl[id].db_name, geom_name))
{ data_input.usGrid_id = id; break; }
/* found it */
if (Id==NGEOM) {
fprintf(stderr,"Error: invalid Geom %s\n", geom_name);
exit(1);
}

(8) Check for the input Model provided by the user. Quit if it does not
match any of the models loaded from the Table file; else note the ID
of the matched Model Type.

for (id=0; id < NMODEL,; id++)
if (Istrcmp (db_mdl_tbl[id].db_name, model_type))
{ data_input.usProc_id =id; break; }
/* found it */
if (d==NMODEL) {
fprintf(stderr,"Error: invalid Model %s\n", model_type);
exit(1);
}

(9) Build the name of ".geom" filename based on the input Geometry
Name.

sprintf (geom_fn, "%s/data/%s.geom", grib_env,
geom_hame);
fprintf(stdout,"call Id_enc_geomfile (%s)\n", geom_fn);

(10) Load the Geometry file into the interG#OM _INstruct

if (Id_enc_geomfile (geom_fn, &geom_in, errmsg) =0) {
fprintf(stderr,"Fatal error= %s\n", errmsg);
exit(1);
}

(11) Create storage for an array to hold the Data for this grid type, with
dimensions based on the number of columns and rows for this
geometry. Quit if procedure fails.

fprintf(stdout,"Malloc float array %d by %d\n",
geom_in.nx, geom_in.ny);
if (I(flt_arr =
(float *) malloc(geom_in.nx * geom_in.ny
*sizeof(float)))) {
fprintf(stderr,"Failed to malloc Float array\n™);
exit(1);
}

10/15/98 Version 1.0 53

GRIB USERM ANUAL

(12) Open the List file for reading, quit on error.

fprintf(stdout,"Prepare List file '%s' for reading\n”,
list_fn);

if (!(flist = fopen (list_fn, "r"))) {
fprintf(stderr,"Unable to open Listfile %s\n",
list_fn);
if (fit_arr !I= NULL) free(flt_arr); /* release float
array */
exit(1);

(13) Allocate storage and initialiggRIB_HDRstructure, quit on error.

if (init_gribhdr (&gh, errmsg)) {
fprintf(stderr,"Abort; error=%s\n", errmsg);
if (flist) fclose (flist);
if (fit_arr = NULL) free(flt_arr); /* release float
array */
exit(1);
}

(14) Loop: !create a GRIB msg per entry in List file
for (stat=0; !feof(flist) && 'ferror(flist);)

(a) Read next entry from List file

memset ((void*)line, "\0', sizeof line);

memset ((void*)dummy, \0', sizeof dummy);

memset ((void*)temp, \0', sizeof temp);

if (fgets(line, 100, flist) == NULL) break;

if (sscanf (line, "%s%s", temp, dummy) != 1) {
fprintf(stderr,"Invalid List_fn entry: [%s %s...]\n",
temp,dummy);
continue; }

fprintf(stdout,"\n[%s]=\n", temp);

(b) Extract out the field information from the entry such as parmname,
Ivitype, IvI1, IvI2, dtg, forecast period. Entry has format=
'leee.parmname.lvitype.I1.12.yyyymmddhh.tau’

for (pl=temp, quit=i=0; !quit && i < 7 ; i++, pl=p2+1)

if ((p2=(char *)strchr(pl, ."))==NULL)
p2=temp-+strlen(temp);

[* Extract */

strncpy (dummy, pl, p2-pl); dummy [p2-p1] = "\0";

54

Version 1.0 10/15/98

GRIB USERM ANUAL

switch (i) {
case 0: /*'ieee.' part */
if (strcmp (dummy, "ieee™) {
fprintf(stderr,"No ‘ieee.’, drop [%s]\n",temp);
quit=1; }
break;

case 1. /* PARM part,

fill data_input's usParmid, usParmsub, nDec_sc_fctr
*
if (map_parm (dummy, &data_input, &scl, &ref,
errmsg)) {

fprintf(stderr,"%s, drop [%s]\n", errmsg,temp);
quit=1; }
break;

case 2: /[* LEVEL part,
go fill data_ INPUT'S usLevelid, SCALE up IvI1 & IvI2
which currently have not been read in yet */
if (map_Ivl (dummy, &data_input, &scl, &ref, errmsg))

fprintf(stderr,"%s, drop [%s]\n", errmsg,temp);
quit=1; }
break;

case 3. /*LEVEL 1 part */
if (strcspn (dummy, "0123456789") != 0) {
fprintf(stderr,"Bad level_1, drop [%s]\n", temp);
quit=1; }
else data_input.nLvl_1 = scl*atoi(dummy) + ref;
break;

case 4: [* LEVEL_2 part */
if (strcspn (dummy, "0123456789") != 0) {
fprintf(stderr,"Bad level_2, drop [%s]\n", temp);
quit=1; }
else data_input.nLvl_2 = scl*atoi(dummy) + ref;
break;

case 5: [* DTG part */
if (strlen(dummy)!=10 ||
strespn (dummy,*0123456789")!= 0)
{ fprintf(stderr,"Bad DTG, drop [%s]\n", temp);
quit=1; }
else {
uldtg = (unsigned long)atol (dummy);
data_input.nYear = uldtg / 1000000;
data_input.nMonth = (uldtg / 10000) % 100;
data_input.nDay = (uldtg / 100) % 100;
data_input.nHour = (uldtg % 100);
if (*(p2+1) =="\0") { fprintf(stderr,
"Missing Forecast Period, drop [%s]\n", temp);

quit=1; }
}
break;
case 6:
10/15/98 Version 1.0

55

GRIB USERM ANUAL

/* Forecast Period part */
if (strcspn (dummy, "0123456789") != 0) {
fprintf(stderr,"Bad Forecast Period, drop [%6s]\n",
temp); quit=1; }
else
{
data_input.usFcst_perl = (unsigned
short)atoi(dummy);
if (*(p2+1) '="0
{ fprintf(stderr,
"Invalid info AFTER Fcst_per, drop [%s]\n",
temp); quit=1;
}
}

break;
} I* Switch */
} I* For */

(c) Check if the extraction of info was successful. If not then skip this
entry, loop again to get the next entry in List file;

if (quit) continue;
if (i <6){
fprintf(stderr,
"Proper entry=
'ieee.$parm.$ivl.$lvi1.$lvi2.yyyymmddhh.tau’, "\
"drop [%s]\n", temp);
continue;

}
(d) Go load IEEE file into Float array, skip if failed.

sprintf (ieee_fn, "%s/data/%s", grib_env, temp);
fprintf(stdout,"call Id_enc_ieeeff (%s)\n", ieee_fn);
if (Id_enc_ieeeff (ieee_fn, flt_arr, geom_in.nx *
geom_in.ny, errmsg)) {
fprintf(stderr,"Failed to load IEEE file %s,
ermsg=%s\n",
ieee_fn, errmsg);
continue;

}
(e) If desired, find the Range of Data and count #Zeros.

cnt=0;

min = max = flt_arr[0];

for (i=geom_in.nx*geom_in.ny-1; i > 0; i--) {
if (min > flt_arr[i]) min = flt_arr[i];
if (max < flt_arr[i]) max = flt_arr][i];
if (fit_arr[i] == 0.0) cnt++;

}

fprintf(stdout,"--> MIN value= %If, MAX= %lf, %ld
Zeros\n",

min, max, cnt);

56

Version 1.0 10/15/98

GRIB USERM ANUAL

(H Change the Case ID character to flag this as example #3. This
character is the 'c' part of the default flename provided by the GRIB
library with the format.

'MID_GID_yyyymmddhhttt_PID_LID_Ivl1.c.grb’
user_input.chCase_id="3";

(9) Go Encode the message now, quit on error.

if (grib_enc (data_input, user_input, geom_in, flt_arr,
gh,

errmsg)!= 0) {

fprintf(stderr,"Abort; error=%s\n",errmsg);

stat=1; break;

}

(h) Form a filename for the output file that reflects the type of message.
The format of the filename is:

'MID_GID_yyyymmddhhttt_PIndx_LID_Ivi1.c.grb’
make_default_grbfn (data_input, user_input, out_fn);

(i) Write the encoded message out to external file using the default name.

if (gribhdr2file (gh, out_fn, errmsg) !=0) {
fprintf(stderr,"Abort; error= %s\n", errmsg);
stat=1; break;

} I* loop for each leee fn in List_fn */

(15) Close List file, free storage of data array.

if (flist I= NULL) fclose (flist);
if (flt_arr '= NULL) free(flt_arr);

(16) Free up storage used by GRIB Header,

CAUTION : DON'T FORGET THIS STEP

free_gribhdr (&gh);

(17) Exit the program.
exit(stat);
}

10/15/98 Version 1.0 57

GRIB USERM ANUAL

5.6 GRIB TABLE MANAGEMENT

This section is primarily intended for users who intend to generate GRIB data. Developers
of custom decoding applications may need to reference the Decoder Table description in
Section 5.6.1.1, but it should be stressed that these users only need to access the decoder
table - their application should not modify the decoder table in any way, as this is
maintained by the GRIB encoding site (originating center) and/or MEL.

To allow for unigueness among multiple originating centers’ GRIB definitions, a table
format has been developed as part of the MEL GRIB Software Library. This table format is
not supported by the WMO GRIB Standard, and was developed for use primarily by MEL
Resource Sites only, though it could be used by any GRIB producing site. The use of
external tables does not violate the GRIB standard in any way; it simply provides a
mechanism by which a single application can process GRIB data from multiple sites
without any internal code changes.

There are four binary codes in the Product Definition Section that refer to a table of
enumerated definitions. They are the Generating Process ID, the Grid Definition ID, the
Parameter ID, and the Level Type ID. In each case, the ID must fit in one octet (or byte),
which means there are 256 possible values, from 0 to 255. In the case of the Generating
Process ID and Grid Definition ID, all definitions are left up to the originating center; the
WMO has not defined any standard set of grids or generating processes. In the case of the
Level type ID, there is a standard set of definitions by the WMO, but there is also room in
the table for some additions by the originating center.

The parameter ID table contains the WMO definitions confined to the first 128 codes, while
the second 128 codes are open for definition by the originating center. The MEL GRIB
software has implemented a sub-table extension for the parameter ID table where the codes
250 through 254 each indicate (or point to) a secondary table of another 255 possible
definitions (see Figure 3). The structure of the sub-table definitions is described in the table
format discussion below. The sub-table information is included in a GRIB message by
storing the sub-table indicator (code 250 through 254) in the parameter ID position of the
PDS (octet 9), and storing the code ID defined within the sub-table in sub-parameter ID of
the PDS (octet 45). The sub-parameter ID stored in octet 45 is an extension to the GRIB
standard, and is fully described in Appendix C. Because only the MEL GRIB library
functions know how to access this extension, users are encouraged to use the 128 codes
available in the main table before defining parameters in the sub-tables.

58 Version 1.0 10/15/98

GRIB USERM ANUAL

Indicator of Parameter with MEL Extension for Sub-Tables

Main Table

Reserved 000

001

002
®

End WMO Defined Section 127
Begin Locally Defined Section 128

®
)
® Sub-Table A
Pointer to Sub-Table A 250 | EEEEEE— 000 B
Pointer to Sub-Table B 251 001 C
Pointer to Sub-Table C 252 ° D
Pointer to Sub-Table D 253 PY
Pointer to Sub-Table E 254 d E
Missing Value 255 255

Originating Centers have 127 available
definitions in the main table, plus an additional

254 definitions in each sub-table if extensions are used.
Figure 3. WMO Code Table 2

There are two table files related to code definitions that must be maintained by any center
producing GRIB messages. The first is the encoding table, which provides a mapping from
the local reference names for parameters, levels, geometries, and models to GRIB codes.
The encoding table also includes some required encoding information for each parameter
and level type. This table is meant for local use at the encoding site only. The second table
is the decoding table, which provides a mapping from the GRIB codes decoding programs
will encounter in processing messages to descriptive information about gridded data fields
contained in the messages. This table is intended for distribution to the GRIB users, and is
to be made available on the MEL GRIB Table FTP site $&&tion 5.3.2

5.6.1 EXTERNAL TABLE FORMAT

The information required to decode and encode a GRIB message is stored in two
separate files. In this document, they will be referred to as the Decoder and Encoder
Table files. The MEL GRIB Software Library load functions require these files to be
in the format described below.

The following rules need to be followed when creating or altering the Decoder and
Encoder Table files:

1. Tab characters are not allowed.

10/15/98 Version 1.0 59

GRIB USERM ANUAL

2. Lines that start with '#' are considered to be comments and are skipped.

3. Each table file is made up of multiple tables. Each table within a file must
begin with the proper Header Section and must be followed by all of its entries.
The load function will assume it is at the end of the current table when it reads
the next table's Header Section.

4. Lines that do not have as many arguments as expected will be dropped by the
load function. A warning message will be displayed.

5. Table entries (a single line in the file) must have at least two spaces between
each attribute, unless specified otherwise below.

5.6.1.1 HeE DECODER TABLE FILE

The information needed to decode a GRIB message's Parameter ID, Level Type
ID, Model ID and Geometry ID is organized into separate tables in the Decoder
Table file. These tableaustappear in the following order: the Main Parameter
table, the Parameter Sub-Tables A through E, the Level Type table, the Model
Table, and the Geometry Table.

GRIB Table 2: Parameter Definitions

The GRIB Parameter table provides a mapping from GRIB parameter codes to text
definitions of parameter and unit. The WMO provides a default set of parameter
definitions in Code Table 2 of Reference C. These WMO definitions are confined to
the range 1 to 127 in the Main Parameter table. Additional Parameters may be defined
for local use in the range 128 - 255 of the main table, and in the range 1 to 255 of the
five sub-tables (A through E). The use of sub-tables allows for an additional 1275
parameter definitions, in addition to the 255 definitions in the main table. The

following rules must be followed to ensure proper Parameter Table loading:

1. Header Section:

GRIB Table 2

Code Figure Field Parameter Unit
002 Pressure reduced to MSL Pa
003 Pressure tendency Pa/s

The first three lines above make up the Header Section of the Main Parameter table in
the Decoder file. They all start at the first column of each line. The Sub-Table Header
Section shall read "GRIB Table 2 - Sub A" through "GRIB Table 2 - Sub E" rather

than "GRIB Table 2". Note that these Header Sections MUST be present whether
local tables are used or not.

HHEE R T E R
GRIB Table 2 - Sub A
Code Figure Field Parameter Unit

60

Version 1.0 10/15/98

GRIB USERM ANUAL

HHEE R T E R
GRIB Table 2 - Sub B
Code Figure Field Parameter Unit

HHEE R T E R
GRIB Table 2 - Sub C
Code Figure Field Parameter Unit

HHEE R T E R
GRIB Table 2 - Sub D
Code Figure Field Parameter Unit

HHEE R T E R
GRIB Table 2 - Sub E
Code Figure Field Parameter Unit

2. The GRIB code in the Main Table and all of the Sub-Tables must fall between 001
and 255 (GRIB code 000 is reserved and not used). Each GRIB code is only accepted
once by the Load function, so duplicate GRIB code definitions are dropped, even if the
Description and Unit are different.

3. The Description field can contain one or more words (upper case or lower case)
separated by a space. It cannot exceed 74 characters in length and must be followed
by at least 2 spaces before the Unit field begins. Uniqueness of this field is not
checked.

4. The Unit field can contain one or more words (upper case or lower case) separated
by a space. It cannot exceed 24 characters in length and defaults to '-' where the Unit
is not applicable. Uniqueness of this field is not checked.

Lines with invalid GRIB codes, missing Description or Unit will be dropped by the
load function and a warning message will be displayed.

GRIB Table 3: Level Type Definitions
The following rules must be followed to ensure proper Level Table loading:

1. The Level Header Section contains 4 lines and all start at column 1. This is the

GRIB Table 3: Level Definitions

Line 1: Level ID | Number of Octets | Meaning
Line 2: Contents of octet 11 (optional)

Line 3: Contents of octet 12 (optional)

10/15/98 Version 1.0 61l

GRIB USERM ANUAL

Each record of the level table has up to three lines depending on the value of "Number
of Octets" field. The first line provides three pieces of information: a GRIB code, a
count of Octets and the Meaning (description) of the Level. All three of these items
must be separated with at least two spaces (Vertical bar '|' is only for clarification and
is not needed). Lines 2 and 3 are optional and their existence is dictated by the
Number of Octets, see below.

2. The GRIB code must fall between 001 and 255 (GRIB code 000 is reserved and not
used). Each GRIB code is only accepted once by the Load function, so duplicate
GRIB code definitions are dropped.

3. The Number of Octets indicates how many octets are used to define each surface of
the level type. Valid values are 0, 1, or 2.

"0" means that octets 11 and 12 are not defined, and that there will be no more
lines to follow.

"1" indicates a layer with octet 11 defining the top surface and octet 12 defining
the bottom surface. A value of "1" therefore implies that there will be two
more lines in the table.

"2" indicates a level defined by one 2-byte value stored in both octets 11 and 12.
There will be one more line in the table in this case.

4. Meaning is a description of the Level. It may contain one or more upper or lower
case words separated by a space, and cannot exceed 99 characters. Uniqueness of this
field is not checked.

5. The Octet 11 content line is only present if number of Octets is 1 or 2. It may
contain one or more upper or lower case words separated by a space, and cannot
exceed 99 characters. Uniqueness of this field is not checked.

6. The Octet 12 content line is only present if number of Octets is 1. It may contain
one or more upper or lower case words separated by a space, and cannot exceed 99
characters. Unigueness of this field is not checked.

Some examples follow:

002 0 Cloud base level
003 0 Level of cloud tops
100 2 Isobaric surface
Pressure in hPa
101 1 Layer between two isobaric surfaces
Pressure of top in kPa
Pressure of bottom in kPa
103 2 Specified altitude above mean sea level
Altitude in meters
104 1 Layer between two specified altitudes above mean sea level

62

Version 1.0 10/15/98

GRIB USERM ANUAL

Altitude of top in hm
Altitude of bottom in hm

105 2 Specified height level above ground
Height in meters

Lines with invalid GRIB codes, a missing description, or an inconsistency between the
number of octets field and the number of descriptive lines that follow will be dropped
by the load function and a warning message will be displayed.

GRIB Model Definitions
The following rules must be followed to ensure proper Model Table loading:

1. The Model Header Section contains 3 lines and all start at column 1.

GRIB Table - Generating Process Defs (Octet 6 of PDS)
Code Figure Model Name

2. Each record of the table contains a GRIB code and a description of the model or
process that generated the field. The GRIB code must fall between 001 and 255
(GRIB code 000 is reserved and not used). Duplicate codes are dropped.

3. The Model Name may be one or more words separated by a space and cannot
exceed 60 characters.

Lines with invalid GRIB codes or a missing description will be dropped by the load
function and a warning message will be displayed.

GRIB Geometry Definitions
The following rules must be followed to ensure proper Geometry Table loading:

1. The Geometry Header Section contains 3 lines and all start at column 1.

GRIB Table - Pre-defined geometries (Octet 7 of PDS)
Code Figure Geometry Name

2. Each record of the table contains a GRIB code and a description of the geometry.
The GRIB code must fall between 001 and 255 (GRIB code 000 is reserved and not
used). Duplicate codes are dropped.

3. The Geometry Name may be one or more words separated by a space, but cannot
exceed 60 characters.

NOTE: Lines with invalid GRIB codes or a missing description will be dropped
by the load function and a warning message will be displayed.

10/15/98 Version 1.0 63

GRIB USERM ANUAL

5.6.1.2 HE ENCODER TABLE FILE

The information needed to encode the Parameter, Level Type, Model and Geometry
associated with a gridded data field is organized into separate tables in the Encoder
Table file. These tableaustappear in the following order: the Parameter Tables,
Level Table, Model Table, and Geometry Table.

The Parameter Table

The Parameter Table is made up of a main table and five sub-tables labeled A
through E. Definitions in the sub-tables are encoded by placing the sub-table
identifier in the parameter identification octet of the PDS, and placing the sub-
table definition in octet 45 of the PDS. The sub-table identifiers are referenced as
shown in Table 2.

Table 2. Sub-Table Identifiers

Sub-Table Identifier
A 250
B 251
C 252
D 253
E 254

The Parameter and Units provided by the WMO are confined to the range 1 to
127 in the Main Parameter Table. Additional Parameters may be defined for
local use and are stored in the range 128 - 255 of the main table, and in the five
sub-tables (A through E). The use of sub-tables allows for an additional 1275
parameter definitions, in addition to the 255 definitions in the main table. Each
record of the Parameter table contains six pieces of information: a Parameter
Name, a Table Code, a GRIB code, a Scale Factor, an Offset, and a Decimal
Scale Factor.

The following format must be followed to ensure proper Parameter Table
loading:

1. Header Section:

XXXXX to GRIB Parameter Table
XXXXX FIELD TABLE CODE GRIB CODE SCALE OFFSET DSF

wnd_ucmp 0 033 1.000000 0.000000 5
wnd_vert_vel 0 039 100.000000 0.000000 5

64

Version 1.0 10/15/98

GRIB USERM ANUAL

mn_dpth 0 147 1.000000 0.000000 1
cloud_coverage A 001 1.000000 0.000000 1

The first three lines above make up the Header Section of the Parameter table in
the Encoder file. They all start at the first column of the line. XpoexXis
meant to refer to the name of the local data management system.

2. The Field name consists of one contiguous name, not to exceed 30 characters,
to indicate how the parameter is referenced in the local dbms.

3. The Table Code is either 0, A, B, C, D, or E. Codes A through E indicate at
the GRIB code that follows is part of the specified Sub-Table. Code 0, implies a
definition in the main table.

4. The GRIB code in the Main Table and any of the Sub-Tables must fall

between 001 and 255 (GRIB code 000 is reserved and should not be used). Each
GRIB code is only accepted once by the Load function so duplicate GRIB code
definitions are dropped even if the Description and Unit are different.

5. The Scale and Offset are used to convert the parameter's unit to GRIB
standard units.

6. The Decimal Scale Factor is an integer that is used to scale the data up by
powers of 10 to set the desired encoding precision. A value of 3 implies that the
data will be scaled up by 1000 prior to truncating the data to integers, thereby
preserving precision in the data to 3 decimal places. It is recommended that the
decimal scale factor be set to one order of magnitude beyond the precision
desired.

Lines with missing arguments are dropped and a warning message is displayed.
The Level Table

The following format must be followed to ensure proper Level Table loading:

1. The Header Section:
XXXXX to GRIB Level Table

XXXXX Level Type GRIB CODE SCALE OFFSET
surface 001 1.000000 0.000000

atms_lay 104 0.010000 0.000000

sgma_Ivl 107 10000.000000 0.000000

isnt_Ivl 113 0.000000 273.160004

The first three lines above make up the Header Section of the Level table in the
Encoder file. They all start at the first column of the line.

10/15/98 Version 1.0 65

GRIB USERM ANUAL

2. The Level Type consists of one contiguous name, not to exceed 30 characters,
to indicate that the level is referenced in the local dbms.

3. The GRIB Code should fall in the range of 1 through 255. GRIB Code 000 is
reserved and not used. Duplicate Code definitions are dropped.

4. The Scale and Offset are used to convert the level's unit to GRIB standard
units.

The Model Table
The following format must be followed to ensure proper Model Table loading:

1. The Header Section:
XXXXX to GRIB Model Table

XXXXX Model Name GRIB CODE
NORAPS 001
COAMPS 002
NOGAPS 003

The first three lines above make up the Header Section of the Model table in the
Encoder file. They all start at the first column of the line.

2. The Model Name consists of one contiguous name, not to exceed 30
characters, used to describe the Model.

3. The GRIB Code should fall in the range of 1 through 255. GRIB Code 000 is
reserved and not used. Duplicate Code definitions are dropped.

The Geometry Table
The following format must be followed to ensure proper Geometry Table loading:

1. The Header Section:

XXXXX to GRIB Geometry Table
XXXXX Geometry Name GRIB CODE

mediterranean_109x82 001
persian_gulf NORAPS 63x63 002
global_144x288 003

The first three lines above make up the Header Section of the Geometry table in
the Encoder file. They all start at the first column of the line.

2. The Geometry Name consists of one contiguous name, not to exceed 30
characters, to describe the Geometry.

Version 1.0 10/15/98

GRIB USERM ANUAL

3. The GRIB Code should fall in the range of 1 through 255. GRIB Code 000 is
reserved and not used. Duplicate Code definitions are dropped.

5.7 FUNCTION DEFINITIONS

NOTE: In any of the functions discussed below, please use this key. ARGUMENTS

(Input>> = input, <<Output = OUtput, <<input and Output>> = (input and output)

5.7.1 DECODING FUNCTIONS

5.7.1.1 INIT _GRIBHDR

Allocates storage for GRIB Header andetsire_msg and initializes every
attribute. For some of the functions mentioned below, this function must be the
first GRIB function called. This function needs to be called only one time in a
program. The form is:

int init_gribhdr (ppgrib_hdr, errmsg)

Where:
<<output GRIB_HDR **ppgrib_hdr

GRIB Header structure, Null upon entry. Returns pointing to a newly created
storage. lts attributentire_msg' will point to a block of size indicated in
‘abs_size' (initially set toDEF_MSG_LENbytes, segrib.h).

'entire_msg' may later be expanded by other functions if required, but
‘abs_size' must be updated to the expanded byte length.

<<Output char *errmsg: Empty array, returned filled if error occurred
RETURNS:

00 No error; storage for GRIB header anceitsire_msg array created
and clearedmsg_length and all section lengths are set to zero, all section
pointers are Nullabs_size is set toDEF_MSG_LENshuffled' flag is set to
zero.

10 Faliled, seerrmsg
5.7.1.2 FREE_GRIBHDR
Frees up storage of GRIB Header structure and all its attributes. When

init_gribhdr is called, this function must be the last function called in the
program. The form is:

10/15/98 Version 1.0 67

GRIB USERM ANUAL

void free_gribhdr (ppgrib_hdr)
Where:

<<Output GRIB_HDR **ppgrib_hdr GRIB Header structure
whose storage is released.

RETURNS: None
5.7.1.3 INIT _DEC STRUCT

Initializes the four internal Decoder structures. This function is mandatory when
grib_dec isto be used. The form is:

void init_dec_struct (pds, gds, bms, bds_head)

Where:

<<Output PDS_INPUT *pds Internal PDS structure to be
initialized

<<output grid_desc_sec *gds : Internal GDS structure to be
initialized

<<Output BMS_INPUT *bms : Internal BMS structure to be
initialized

<<output BDS_HEAD_INPUT *bds_head : Internal BDS struct to be
initialized

RETURNS: None
5.7.1.4 INIT _ENC STRUCT

Initializes structure®ATA INPUTandGEOM_IN This function call is mandatory
when functionsdd_enc_config, Id_enc_ieeeff, Id_enc_ffinfo are
used. The formis:

void init_enc_struct (data_input, geom_in, user_input)

Where:
<<output DATA_INPUT *data_input . Encoder structure to be initialized
<<Output GEOM_IN *geom_in Encoder structure to be initialized

<<output USER_INPUT *user_input . Encoder structure to be initialized
RETURNS: None

5.7.2 DECODING

5.7.2.1 GRIB_DEC

This function decodes a Gridded Binary (GRIB Edition 1) format message. The
functionint_gribhdr must be called beforgib_dec is used. The form is:

68 Version 1.0 10/15/98

GRIB USERM ANUAL

int grib_dec (curr_ptr, pds, gds, bds_head, bms, ppgrib_data,

errmsg)

Where:

Input>> char *curr_ptr: Pointer to block containing
GRIB message to decode

<<Output PDS_INPUT *pds: To be filled with decoded
Product Definition Section
information

<<Output grid_desc_sec *gds: To be filled with decoded
Binary Data Section
information

<<output BDS_HEAD_INPUT *bds_head: To be filled with decoded
Binary Data Section
information

<<Output BMS_INPUT *bms: To be filled with decoded
Bitmap Section information

<<output float **ppgrib_data: Points to NULL upon entry.
Upon successful exit, points
to newly allocatednfalloc)
Float array filled with
unpacked and restored data

<<Output char *errmsg: Empty array, returned filled

if error occurred

RETURN CODE:

0 0 Success*ppgrib_data
restored data

10 Fall: first 4 bytes oturr_ptr

2 0 Fail: last 4 bytes odurr_ptr

30 Fail: not GRIB Edition 1

4 [0 Fail: unknown projection type

points to block with unpacked,

is not 'GRIB'
is not '"7777"

5.7.2.2 LD_DEC LOOKUP

This function reads in the information from an external Lookup table (i.e.,
gltab 2.1). This information is used to convert from GRIB Code Numbers to
descriptive information about the field decoded. The form is:

intId_dec_lookup (lookup_fn, errmsg)

Where:

10/15/98 Version 1.0 69

GRIB USERM ANUAL

Input>> char *lookup_fn: Name of Lookup file from which to
read (i.e., /abspath/gltab 128 2.1)

<<Output char *errmsg: Empty array, returned filled if error
occurred

RETURN CODE:
00 Successful, the four database tables filled
10 File open error or error/eof while reading
5.7.2.3 GRIB_SEEK

This function searches the input file starting at the given offset for a GRIB
message. If found, return it ®RIB_HDRstructure. The form is:

int grib_seek (InFile, offset, Read_Index, gh, errmsg)

Where:

Input>> char *InFile Name of input file to search for
message

<<Input and Output>> long *offset: Number of bytes to skip from the
beginning of file. Gets updated
upon leaving to absolute #bytes
from beginning of file to
beginning of message found.

Input>> int Read_Index: If set, only proceed if 'GRIB'
starts exactly at the given byte
offset

<<Output GRIB_HDR *gh: Empty upon entry to hold the
Message found and its info

<<Output char *errmsg: Empty array, only filled if error

occurred
RETURN CODE:
00 No errors, may or may not have a valid message;
If no Msg was Found:
a) errmsg will hold the Warning msg
If a valid Msg was Found:

a) long *offset - if successful, gets updated to absolute
beginning of Msg

70

Version 1.0 10/15/98

GRIB USERM ANUAL

b) StructureGRIB_HDRholds its infoentire_msg : Is assigned
to newly allocatedMalloc) unsignecthar * array to hold
entire message.

msg_length : size ofentire_msg array in bytes.
ids_len, pds_len, gds_len, bms_len, bds_len,

eds len : Size of each defined sections in bytes.
ids_ptr : Points to message's ldent Data Sect
pds ptr : Points to message's Prod Defn Sect
gds_ptr : Points to message's Grid Defn Sect
bms_ptr : Points to message's Bitmap Defn Sect
bds ptr : Points to message's Binary Data Sect
eds_ptr : Points to message's End Data Sect

C) errmsg remains empty
10 fseek/fread error, all ptrs ®BRIB_HDRset to nullierrmsg filled
20 Gotend of file, all ptrs iIGRIB_HDRset to nullerrmsg filled
30 Nullentire_msg pointer;errmsg filled

4 [Unable to open input filesrrmsg filled

5.7.3 ENCODING

5.7.3.1 GRIB_ENC

grib_enc encodes a GRIB Edition 1 message using the three input internal
structuresATA_INPUT, USER_INPUT, GEOM_IN), and the Floating point
data array. It is valid for Float array to be nulsiRIB_ HDRshows that it
contains a predefined BDS. In that cagéh_enc exits with a non-error status.

int grib_enc (Data_Input, User_Input, Geom_lIn, pfData_Array,

gh, errmsg)

Where:

Input>> DATA_INPUT Data_Input Structure containing input
field information.

Input>> USER_INPUT User_Input Structure containing encoder
configuration data.

Input>> GEOM_IN Geom_In Structure containing grid

geometry description.
Input>> float *pfData_Array

10/15/98 Version 1.0 71

GRIB USERM ANUAL

Array of float data to be packed and stored in the Binary Data Section. Float
array may be Null if the GRIB Header already contains a Binary Data
Section in its attribut&ntire_msg' . That case is referred to as the

'Shuffle Mode' which results in the encoder creating only the sections that
are not already ientire_msg

<<Input and Output>> GRIB_HDR *gh

Pre-allocatednfalloc) structure used to hold the encoded GRIB message
and its information. It contains a large array to hold the encoded message,
pointers to each of the Sections along with their length, and a flag 'shuffled’
that determines how the message is encoded. If 'shuffled’ is zero upon entry,
all six sections will be created and arréiyat *pfData_Array) must
contain the float data. If 'shuffled' is set upon entry, there is already one or
more sections iEntire_msg. Each of these pre-included sections will
have a Non-Null pointer and a non-Zero length. The encoder will then only
create the missing sections and append them at the end of the existing
sections in arraentire_msg' , hence these sections may not be in the
proper order expected by GRIB.

<<Output char *errmsg Empty array, returned filled if error occurred
RETURN VALUE:
00 No errors

GRIB_HDRIs returned with the encoded messageritire_msg' , W/

total message length in msg_length, w/ pointers to each defined GRIB
Header Sections iks_ptr, pds_ptr, gds_ptr, bms_ptr,

gds_ptr, eds_ptr , and each section lengthids_len, pds_len,

gds_len, bms_len, bds_len, eds_len . Note that the sections may
not be in order if the 'shuffled’ bit is set.

10 Failed, msg irrrmsg

5.7.3.2 LD_ENC CONFIG

Fill the structure holding user's input frawnfig_fn that is passed in by the
user. The form is:

Id_enc_config (config_fn, User_Input, errmsg)

char *config_fn: Name of file to load from
<<output USER_INPUT *User_Input: Filled with data read from file
<<Output char *errmsg : Returned filled if error occurred

RETURN CODE:

72

Version 1.0 10/15/98

GRIB USERM ANUAL

00 Success, file is read and closed, user_input is filled
10 Error opening fileerrmsg filled
2 [Failed to get all expected argumemrtsmsg filled
30 Ferror in file,errmsg filled
5.7.3.3 LD_ENC IEEEF

This function loads the user's pre-allocatedlioc) float array with data from
binary flat file passed in by user (i.e., FF*). The form is:

int Id_enc_ieeeff (ieee_fn, farr, elements, errmsg)

Where:

Input>> char *ieee_fn: Name of IEEE Flat file (with full path) to read

<<output float *farr: Pre-allocated (malloc) array to store data from read file
Input>> int elements Number of float elements to read from file

<<Output char *errmsg Returned filled if error occurred

RETURN CODE:
00 Success, file is read and closed, float is filled
10 Error opening fileerrmsg filled
2 [Failed to get all expected elementsrmsg filled
30 Incoming float array is nullerrmsg filled
5.7.3.4 LD_ENC FFINFO

This function fills theDATA_INPUT structure from file whose name is passed in.
The form is:

int Id_enc_ffinfo (ieee_info_fn, Data_Input, errmsg)
Where:
Input>> char *ieee_info_fn Name of config information file to load

<<output DATA_INPUT *Data_Input To be filled with data read from config file

10/15/98 Version 1.0 73

GRIB USERM ANUAL

<<Output char *errmsg Filled if error occurred
RETURN CODE:
00 Success, file is read and closed, structure is filled
10 Error opening file
2 [Failed to get all expected arguments
30 Ferror
5.7.3.5 LD_ENC GEOMFILE

This function fills theGEOM_INstructure from file whose name is passed. The
form is:

int Id_enc_geomfile (geom_fn, Geom_In, errmsg)

Where:

Input>> char *geom_fn Name of geom information file to load
<<Output GEOM_IN *Geom_In To hold geom information read from file
<<Output char *errmsg Returned filled if error occurred

RETURN CODE:
00 Success, file is read and closed, structure is filled
10 Error opening file,errmsg filled
2 [Failed to get all expected argumegnisnsg filled
30 Ferrorerrmsg filled
5.7.3.6 MAP_PARM
This function searches the previously defined array of parameter definitions for
the specified parameter name. If a match is found, the function returns the GRIB
parameter and sub-parameter ID’s, as well as the defined scale and offset that is

required to convert the input data array to GRIB units. If no match is found, an
error messages(rmsg) is returned. The form is:

int map_parm (parm_name, data_input, parm_scl, parm_ref, errmsg)

74 Version 1.0 10/15/98

GRIB USERM ANUAL

Where:

Input>> char *parm_name Name of Parameter to look
for in the array of parameter
structures

<<Input and Output>> DATA_INPUT *data_input Three of its attributes filled
usParm_id, usParm_sub _id,
nDec_sc_fctr)

<<output float *parm_scl Scale factor to convert data to
GRIB unit

<<output float *parm_ref Reference to convert to data
to GRIB unit

RETURN CODE:
00 SuccesshDATA INPUT, parm_scl andparm_ref filled
10 Parameter not foundyrmsg filled
5.7.3.7 MAP_LVL
This function searches the previously defined array of level type definitions for
the specified level type. If a match is found, the function returns the GRIB level

ID for the level type, as well as the defined scale and offset that is required to
convert the level values to GRIB units. The form is:

int map_Ivl (Ivl_type, data_input, Ivl_scl_fctr, Ivl_reference,

errmsg)

Where:

Input>> char *Ivl_type Level to look for in the array of Level
structures

<<Input and Output>> DATA_INPUT *data_input Structure holding data
pertaining to current message required by
the encoder. Three of its attributes get filled
(usLevel_id, nLvl_1, nLvl_2)

<<output float *Ivl_scl_fctr Used along withvl_reference to
convert the Level to GRIB unit.

<<output float *Ivl_reference Used along with Ivl_scl_fctr to convert the

Level to GRIB unit.

10/15/98 Version 1.0 75

GRIB USERM ANUAL

<<Output char *errmsg Empty array, returned filled if error occurred
RETURN CODE:

00 Success, DATA _INPUT filled, fouff may have changed

10 Parameter not found, errmsg filled
5.7.3.8 LD_ENC LOOKUP

This function reads GRIB definitions from an external encoder table. These
definitions are used to convert information about the parameter, level, model, and
geometry of the field being encoded to GRIB Code numbers. The form is:

int 1d_enc_lookup (lookup_fn, errmsg)

Where:
Input>> char *lookup_fn Name of Lookup file to read
<<Output char *errmsg Returned filled if error occurred

RETURN CODE:

00 Successful, the following pre-defined arrays required for encoding GRIB
messages are filled:

PARM_DEFN db_parm_tbI[NPARM * MAX_PARM_TBLS] (parameter info)
LVL_DEFN db_Ivl_tbl[NLEV] (level info)

MODEL_DEFN db_mdI_tbI[NMODEL] (model info)
GEOM_DEFN db_geom_tbl[NGEOM] (geometry info)

10 File open error or error/eof while readingyrmsg filled.

5.7.4 USER CONVENIENCE FUNCTIONS

5.7.4.1 GRIBHDRFILE

This function writes out the GRIB message store@RiB_HDRstructure to an
external file. If the 'shuffle' flag is set, write each individual section out, else write
‘entire_msg' all at once. The form is:

int gribhdr2file (gh, fn, errmsg)

76

Version 1.0 10/15/98

GRIB USERM ANUAL

Where:

Input>> GRIB_HDR *gh Contains GRIB message to be printed.

Input>> char *fn Name of file to write to (includes absolute path)
<<Output char *errmsg Array returned empty unless error occurred

RETURN CODE:
no errors - GRIB file successfully created
error -errmsg s filled

5.7.4.2 APPLY_BITMAP

This function applies the bitmap to the float array. The input float array is expanded
and filled with*fill_value' in places where data points are missing. The form is:

int apply_bitmap (bms, pgrib_data, fill_value, bds_head, errmsg)

Input>> BMS_INPUT *bms: Pointer to the internal BitMap header
structure. Bit set means datapoint is
present, bit clear means datapoint is
missing

<<Input and Output>> float **pgrib_data . Pointer to Data that was unpacked
from BDS's bitstr. Incoming size
is bms->ulbits_set or (ROW*COL
- #missingpts) elements.

Input>> float fill_value : Float value used for missing datapoints
in expanded array.

<<output BDS_HEAD_INPUT *bds_head : Attribute 'ulGrid_size' to be updated.

<<Output char *errmsg Empty array that's returned filled if error
occurred

10/15/98 Version 1.0 77

GRIB USERM ANUAL

RETURN CODE:

0 — Success. Float **pgrib_data probably have been expanded, OR redefined
bitmap used, no action taken (float array unchanged).

100 NULL bitmap encountered, errmsg filled
2 [0 Error allocating (Malloc) space for data array, errmsg filled
30 Tried to access more than available in message, errmsg filled
411 No bits set in BMS, errmsg filled

5.7.4.3 DISPLAY_GRIBHDR

This function does a byte dump for each of the defined GRIB Sections in the
GRIB message currently stored in the GRIB Header structure. The function
init_gribhdr must be called to use this function. The form is:

void display_gribhdr (gribhdr)

Where:

Input>> GRIB_HDR *gribhdr : GRIB header info to be printed to standard
output

RETURN CODE: None

5.7.4.4 HDR PRINT

This function prints a specified number of bytes from the block provided. It does
not require that the Debug flag be set. The form is:

void hdr_print (title, block, bytestoprint)

Where:

Input>> char *title : Title string to print

Input>> unsigned char *block : Block with content to print
Input>> int bytestoprint : Number of bytes to print

RETURN CODE: None

/8

Version 1.0 10/15/98

GRIB USERM ANUAL

5.7.4.5 MAKE DEFAULT GRBFN

This function builds and returns a default filename for current message to be
encoded using the information from structub@sTA_INPUTandUSER_INPUT
The form is:

void make_default_grbfn (DATA_INPUT di, USER_INPUT ui, char
*default_fn)

Where:

Input>> DATA_INPUT di : Contains information of msg to be encoded
Input>> USER_INPUT ui : Contains the required chCase _id

<<Output char *default_fn . Empty string at least 42 characters in length

RETURN CODE: None

NOTE: default_fn string contains name with format
Mid_Gid_yyyymmddhhtau_PIndx_Lid.Ivl1.c.grb

5.7.4.6 MAKE GRIB_LOG

Produces debug fileRIB.log from the GRIB message in the GRIB Header. To
get the greatest amount of detail from the log, the funddiaiec lookup
must have been called previously to this function. The form is:

int make_grib_log (input_fn, lookup_fn, msg_length, offset,
pds, gds, bds, bms, grib_data, errmsg)

Where:

Input>> char *input_fn X Name of input GRIB file

Input>> char *lookup_fn : Name of Lookup file, null if not used

Input>> unsigned long msg_length : Total length of GRIB message

Input>> long offset : Starting location of GRIB message
in bytes

Input>> PDS_INPUT pds : Product definition section structure

Input>> grid_desc_sec gds Grid description section structure

Input>> BDS_HEAD_INPUT bds: Binary data section header structure

10/15/98 Version 1.0 79

GRIB USERM ANUAL

Input>> BMS_INPUT bms:
Input>> float *grib_data

<<Output char *errmsg

ACCESSES GLOBAL VARS:
int UseTables ;

CTRS_DEFN db_ctr_tb[NCTRS]:

Bit map definition section structure
Array of decoded data

Text error message. NULL if
function successful.

Set to one if decoder table used

Predefined array holding Originating
Center information

PARM_DEFN db_parm_tbl [MAX_PARM_TBLS * NPARM]:

Predefined array of Parameter information

LVL_DEFN db_IvI_tbl [NLVL]:

MODEL_DEFN db_mdl_tbl [NMODEL]:

GEOM_DEFN db_geom_tbl [NGEOM]:

RETURN CODE:

Predefined array of Level
information structure

Predefined array of Model
information structure

Predefined array of Geometry
information structure

00 No errors, file GRIB.log has been created

10 Error, errmsg filled

5.7.4.7 PRT_INP_STRUCT

This function prints the content of the Internal GRIB structures. The form is:

void prt_inp_struct (pds, gds, bms_input, bds_head_input,

ppfarr)

Where:

Input>> PDS_INPUT *pds :

Input>> grid_desc_sec *gds

Input>> BMS_INPUT *bms_input

Internal Product Defn Section
structure to print

Internal Grid Defn Section to print

Internal Bitmap Section to print

80

Version 1.0

10/15/98

GRIB USERM ANUAL

Input>> structure BDS_HEAD_INPUT *bds_head_input
Internal 11-byte hdr of Binary Data Section to print

Input>> float **ppfarr : Unpacked & restored float data array to
print

RETURN CODE: None
5.7.4.8 INIT _STRUCT

This function initializes structurd3ATA INPUTandGEOM IN The form is:

void init_struct (generic, size)

Where:
<<Output void *generic : Address of block to be cleared out
Input>> size_t size: Size of block

RETURN CODE: None
5.7.5 STRUCTURES

The include filesnput.h andgrib.h contain definitions for several structures used by
the MEL GRIB Software Library functions. However, this document will only cover the
structures that are intended for access by the user.

5.7.5.1 THE USER_INPUTSTRUCTURE (FROM INPUT. H)

TheUSER_INPUTstructure holds configuration information for the encoder run,
including some variables that are kept constant for a given data set. The structure can
be filled manually or from a file using the functitanenc_config(). Each of the
elements of the structure is defined in theifiut.h , but some additional

discussion is warranted.

Unsigned char chCase _id

This is used to specify an alphanumeric character that will be used in the name of each
GRIB file encoded (see default file name), allowing the user to uniquely identify files
produced by a certain run.

NOTE: If the default file name is not used, this parameter is not required.

10/15/98 Version 1.0 81

GRIB USERM ANUAL

Unsigned short usParm_tbl

This specifies which standard GRIB table is being used. The WMO has recently
released version 3 of the standard table, but most centers are still using version 2. The
file SGRIB_ENV/tables/gltab 2.0 defines the WMO standard GRIB table,

version 2. There are no model or geometry definitions made in the standard table.

Unsigned short usSub_tbl

This specifies the version of the local table being used. The local table allows the user
to define extensions to the standard WMO table, and therefore the local table version is
relative to the standard GRIB table version. It is very important that strict version
control be maintained on all tables as this information is used by the decoder to
determine if it has the correct table to decipher what is in a message. See the
discussion on GRIB Table ManagemenSgrction 5.6

Unsigned short usCenter_id

This indicates the GRIB code for the originating center as defined in Table O of the
WMO GRIB standard. Definitions of 128 and above are left undefined by the WMO
and can be used for local definitions.

Unsigned short usCenter_sub

This parameter is used to add another layer of classification to the identification of the
originating center responsible for the encoding the message. The WMO defines
official centers in Code Table O of the standard. The range 128-254 is left open for
“National Use” but it is unclear how this is intended to be used and there is currently
no official national list of originating centers. Therefore, the center sub-1D allows
anyone to distinguish themselves as a sub-element of an identified center (e.g., NRL
Monterey could be considered a sub-center of center # 058, Fleet Numerical
Meteorology and Oceanography Center).

Unsigned short usGds_bms_id

This parameter represents the decimal equivalent of the byte defined by WMO Code
Table 1, which is defined by the two leftmost bits as follows:

bit 1: 0 — GDS omitted, 1~ GDS included
bit 2: 0 -~ BMS omitted, 1- BMS included
bit 3-8: Reserved by WMO and defined as 0

The Grid Definition Section should typically be included. The Bit Map Section may

or may not be included. In the configuration file, these bits are set individually and the
functionld_enc_config() takes care of the conversion. If INBER_INPUT

structure is filled manually, the decimal value of tk&ds_bms_id will have to be
computed based on the desired bit settings (i.e., a message with a GDS, but not BMS,
gets ausGds_bms_id = 128).

Version 1.0 10/15/98

GRIB USERM ANUAL

Unsigned short usTrack_num

This is a MEL extension designed to allow tracking of data sets by assigning a unique
integer to every dataset encoded and delivered from a resource site. This has not yet
been implemented in the MEL Resource Site Software and this parameter should be
set to 0.

Unsigned short usBDS_flag

This parameter represents the decimal equivalent of the byte defined by WMO Code
Table 11, which is defined by the three leftmost bits as follows:

bit 1: 0 - Grid point data, 1. Spherical Harmonic Coefficients

bit 2: 0 - Simple Packing, 1. Complex or second-order packing

bit 3: 0 - Floating point data, 1. Integer data

bit 4-8: Used for complex packing only and defined as 0

This flag is defaulted to O in the configuration file and should be left that way as the
library currently does not support Spherical Harmonics or Complex Packing. Floating
Point data and Integers are treated the same way in the library, so bit 3 is essentially
irrelevant.

Unsigned short usBit_pack _num

This allows the user to specify how many bits are to be used per data point in packing
the data. Ifitis set to O, the encoder will determine the minimum number of bits
required to pack the data, maintaining the resolution specified by the decimal scale
factor. Unless the user thoroughly understands the packing method defined in the
GRIB standard, it ifighly recommended that this flag always be set to 0.

5.7.5.2 THE DATA_INPUTSTRUCTURE (INPUT. H)

TheDATA_INPUT structure holds all of the descriptive information about the field
being encoded, (except for its geometry, which is specifi@EmM_IN.

Unsigned short usProc_id

This defines the ID of the model that created the data encoded in this message. The
model IDs are defined in the local table. An undefined model is specified by setting
this parameter to 255.

10/15/98 Version 1.0 83

GRIB USERM ANUAL

Unsigned short usGrid_id

This defines the ID of the geometry for data encoded in this message. The geometry
IDs are defined in the local table. An undefined geometry is specified by setting this
parameter to 255, which then requires that a geometry be defined in the GDS. Note
that the converse is not true - a GDS can be includedsitl_id can be setto a

value other than 255; in fact, this is the recommended practice. Note also that setting
this parameter doestimply that a GDS is present - that is handled by the
usGds_bms_id in theUSER_INPUTSstructure.

Unsigned short usParm_id

Unsigned short usParm_sub_id

TheusParm_id holds the parameter identification code as defined in WMO Code
Table 2. Any value greater than 128 implies a locally defined parameter. The MEL
GRIB Software Library has defined an extension to WERIB Edition 1 that

provides for the definition of five sub-tables to be used that allows for an additional
1275 locally defined parameters. These Sub-tables are defined as 2-A through 2-E,
and each one contains 255 definitions. A sub-table parameter is referenced by
usParm_id being set to 250 through 254, indicating a pointer to a specific sub-table
(A through E), andisParm_sub_id being set to the code definition within the sub-
table. See the discussion on GRIB Table Manageme#ahon 5.6.Zor further
explanation.

CAUTION : Take note of the units defined in the talolata must be in thesg
units prior to calling grib_enc

A\1%4

Unsigned short usLevel_id

TheusLevel id holds the level type identification code as defined in WMO Code
Table 3 (refer t&ection 5.6) Locally defined level types are allowed, but there is no
reserved range in Table 3 for local definitions and there is no sub-table extension.

Int nLvl_1, IntnLvl_2

Level 1 gives the value for the level type or defines the top of a layer. Level 2 is used
to define the bottom level if the level type is a layer. These values are always integer
and must be in the units specified in Table 3 of the GRIB standard. If the level type is
a level,nLvil will be encoded into two bytes and so its maximum value is 65535. |If
the level type is a layenLvll andnLvI2 will each be encoded into 1 byte, and
therefore each have a maximum value of 255.

Note that a typical 19.5 m height surface can not be properly encoded using the WMO
level type 105 = "Specified Height Level above ground" because the units of integer
meters will truncate the 19.5to 19. To encode a level of 19.5 m one must resort to
level type 125, which is the high-precision version of type 105, and encode the 19.5 m

84

Version 1.0 10/15/98

GRIB USERM ANUAL

value as 1950 centimeters. Since the maximum allowable value is 65535 the high-
precision level type 125 can only be used up to a height of 655.35 m.

Int nYear, nMonth, nDay, nHour, nMinute, nSecond

All of these refer to the reference or base time of the datac¢he forecast time or
valid time.

Unsigned short usFcst_id, usFcst_perl, usFcst_per2

The parameteusFcst_id specifies the time unit for the forecast parameters and is
defined in GRIB Table 4. ThesFcst_perl specifies the time of the forecast in the
units specified bysFcst_id . TheucFcst_per2 gives the time interval between
analyses or forecasts when averaging.

Unsigned short usTime_range_id, ustime_range_avg,
usTime_range_mis

The indicator refers to the codes defined in Table 5. A simple forecast field is a O.
Other values are explained in Table 5, as well as the meaning of the two parameters
which follow it.

Int nDec_sc_fctr

The input data is scaled up by 10 to the Decimal Scale Factor (DSF) prior to encoding.
The effect is to set the resolution of the data to the number of decimal pl&s in
(i.e.,DSF =2 means a resolution of .01) Note that this is NOT intended to be used
for changing the units of the data.

5.7.5.3 THE GEOM_INSTRUCTURE (INPUT. H)

The GEOM_INstructure holds the definition of the geometry. Only the elements of the
structure required by the encoder are discussed here. The latitude/longitude
convention for all parameters is defined as follows:

» Latitude is in the range + 90 degrees (+ is north)

* Longitude can be in the range £180 degrees (+ is east) or 0 to 360 degrees
(increasing to the east)

Char prin_name

String containing the projection name. Valid options are "lambert", "spherical”, or
"polar_stereo

Long nx, ny

10/15/98 Version 1.0 85

GRIB USERM ANUAL

The number of columns (nx) and number of rows (ny) on the grid. Columns are
generally referred to as north-south lines (meridians), rows as east-west lines
(parallels).

Double x_int_dis, y_int_dis

The grid resolution in kilometers in the x (east-west) and y (north-south) directions.
Need not be filled for spherical projection grids.

Double parm_1, parm_2, parm_3

The definition of the parm 1,2,3 elements depend on the projection of thergrid (
name), as defined below:

"spherical™: Parm 1 stores the grid resolution in degrees of Latitude.
Parm 2 stores the grid resolution in degrees Longitude.
Parm 3 is undefined and should be set to -1.

"lambert": Parm 1 stores the northern-most latitude at which the projection
cuts the earth surface.

Parm 2 stores the southern-most latitude at which the projection
cuts the earth surface.

Parm 3 stores the longitude that is parallel to the y-axis of the
grid.

"polar_stereo™: Parm 1 and 3 are undefined and should be set to -1. Parm 2 stores
the longitude that is parallel to the y-axis of the grid.

Double first_lat, first_lon

GRIB requires that the latitude and longitude of the first data point, as defined by the
'scan’ parameter below, be given as the reference point of the grid system. Latitude is
in the range +/- 90 degrees (+ is North). Longitude can be in the range +/- 180 degrees
(+ is east) or 0 to 360 degrees (increasing to the east).

Double last_lat, last_lon

GRIB requires that the latitude and longitude of the last data point, as defined by the
'scan’ parameter below, also be included for the spherical projection. These
parameters follow the same conventionéras lat/first_lon , and are not

used for the other grid types.

Version 1.0 10/15/98

GRIB USERM ANUAL

Unsigned Short scan

A short integer that indicates how the data is ordered on the grid system. Also, it
implicitly specifies where the first data point is located on the grid, thereby defining
thefirst_lat/first_lon parameters above. This parameter is stored as the
decimal equivalent of an 8-bit binary number defined by the three highest order bits, as
defined byWMO Code Table 8

bit 1 (128): 0- data scans in +i direction (to the right)
1 - data scans in -i direction (to the left)
bit 2 (64): 0- data scans in -jdirection (downward)
1 - data scans in +j direction (upward)
bit 3 (32): 0- data scans across rows first, then columns
1 - data scans across columns first, then rows
As an example, consider a data set for which the first data point is in the upper right
corner of the grid, and the data is stored by scanning down columns from top to

bottom, moving from the right-most to the left-most column. In this case, bits 1 and 3
would be set resulting in a decimal scan value of 160.

usRes_flag
A short integer that indicates a number of conventions about the grid system being
defined, based owWMO Code Table 7. This parameter stores the decimal equivalent
of an 8-bit binary defined by the following bit positions:
bit 1 (128): 0- direction increments not given
1 - direction increments given
bit 2 (64): 0- earth assumed spherical with radius 6367.47 km
1 - earth assumed oblate spheroidal (see WMO manual)
bit5 (8): 0- vector components are defined as north and east

1 - vector components are defined as +i and +j

If the GEOM_INstructure is filled manually, thesRes_flag parameter must be

entered as a decimal value (i.e., "72" if bits 2 and 5 are set). However, if the external
geometry file is used, arGEOM_INis filled using théd_enc_geom function as in

the examples, bits 2 and 5 are entered explicitly and the function will handle the

10/15/98 Version 1.0 87

GRIB USERM ANUAL

translation to a decimal value. The functiorenc_geom will also set bit 1
automatically based on whether or roint_dis/y_int_dis are defined..

5.7.5.4 He GRIB_HDRSTRUCTURE (GRIB. H)

The GRIB_HDRstructure holds the encoded message and all of its information. The
encoder will put the encoded message in the attréntbe_msg , which is a large
array of typechar .

Char shuffled

When this flag is zero, it means that all of the defined GRIB sections are in the order
defined by the GRIB Edition 1 format (Indicator Section, Product Definition Section,
optional Grid Definition Section, optional Bit Map Section, then Binary Data Section
followed by End Section). When this flag is set to 1, it means the defined sections
may not be in the proper order. This parameter can be used to efficiently input and
output GRIB messages without fully decoding them. However, it should only be used
by advanced users that fully understand the structure of GRIB messages.

Long msg_length
This holds the total byte-length of the message currently in the GRIB header.
Long ids_len,pds_len,gds_len,bms_len,bds_len,eds_len

Total length in bytes of the each of the GRIB sections. The sum of all six section
lengths must equal thesg_length parameter.

Long abs_size

Current size of buffeentire_msg in the GRIB header. It is initially allocated
DEF_MESG_LEMumber of bytes, but is expanded if necessBigt MESG_LENs
normally much larger than the actual Message length.

Unsigned char *entire_msg

Points to an array of type Unsigned char and is used to hold the entire GRIB message.
This buffer is created via the call to functimit_gribhdr and its length is stored in
attributeabs_size

Unsigned char
*ids_ptr,*pds_ptr,*gds_ptr,*bms_ptr,*bds_ptr,*eds_ptr

These are pointers to all of the Header Sections that are presentewiiiginmsg
If the section is not included, the pointer will then point to null.

88

Version 1.0 10/15/98

GRIB USERM ANUAL

5.8 RELATED PROCESSING
Not Applicable

5.9 DATA BACKUP
Not Applicable

5.10 RECOVERY FROM ERRORS, MALFUNCTIONS, &
EMERGENCIES

The MEL GRIB Software Library will return an error code to the calling program. It is the
responsibility of the developer of the main program to test for these errors and take
appropriate action. Many times, this will result in terminating the program.

5.11 MESSAGES

Error messages returned by the MEL GRIB Software Library are list&dpandix F.

10/15/98 Version 1.0 89

GRIB USERM ANUAL

This page intentionally left blank

90

Version 1.0

10/15/98

GRIB USERM ANUAL

APPENDIX A. GRIB MESSAGE STANDARD
GRIB Edition 1 Message

Indicator |71182|73 66 [00) 12| 129 01
Data 1 2 3 4 5 6 7 8
Ascii string Message Edition
(IDS) length
in bytes
Product LO| 0] 28 (2, .58, 75, 237, (128, 2 |, 102,
TR 1 2 3 5 6 7 8 9 10
Definition 28 2 58 75 237 128 2 102
Section PDS length GRIBTbI Originating Modelld ~ Grid Id ~ GDSBDS Parameter&. Level Type
(PDS) in bytes Version Center Id NORAPS- Pt Mugu Flag Unit id MeanSea Lvl
International FNMOC PTMUGU GDS included Pressure
Exchange but not BMS Reduced to MSL
IOI 0||97||7||1||O||0||1||O||O||O|IOIOI
11 12 13 14 15 16 17 18 19 20 21 22 23
Height Year of Month Day Hour Minutes Forecast Period Time Time Number
Century Time Unit of Time Interval Range Included in Avg
in Hours Analysis Indicator
. 0, .20, 0, 128 1 — —_ —
24 25 26 27 28 29 to 40 41 42 43 44 45 46
0 20 0 1 - - - - - -
Number Century SubTbl Decimal Reserved Flag SecondsTracking Id ~ Sub-tbl ~ Sub-tbl
Missing fr. Avg entry for Scale Factor indicating fordataset entry for Version
Origina- use of NRL Parame- number
ting ctr extensions ters &
Units
Grid L0, 003 0, .25 ,0,,.0,61,,.0,51, 0113 73 1129 238 3§
... 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Definition 32 0 255 0 61 51 29000 -126500
Section GDS length No. of Vert. PV/PL Data No. Pts No. Pts Latitude of Longitude of
(GDS) in bytes coordparmam means Repre- x-axis y-axis first point first point
neither sentation (millidegrees) (millidegrees)
is present Spherical
128 0,152 88 (129191 68 O ,206,0 ,200 .64, _0,._ 0,
17 18 19 20 21 22 23 24 25 26 27 28 29 ... 32
128 39000 -114500 200 200 64 0
Resolution & Latitude of Longitude of I-direction J-direction Scannirg mode Reserved
Component flags last point last point Increment Increment Pts scan in +l,
Dir increments given; (millidegrees) (millidegrees) (millidegrees) (millidegrees) +J dir; Adjacent
Earth Spherical; U&V pts in |-dir are
relative to grid in +1 & +J consecutive
Bit Map
SeCtion Not included in this message
(BMS)
Binary 0 13 59 L0 L0, 0, (68 , 39, 85 198 8, 0,0,
Def|n|t|0n 1 2 3 4 5 6 7 8 9 10 11 12 3122
) 3122 0 0 10069.773438 8
SeCt|On BDS length Flag Binary Reference Value Num of bits e
(BDS) in bytes Grid pt data; Scale also minimum value of data per packed Actual packed data
Simple packing; Factor value Zero filled to an even
Float values number of octets
End Data 55, 55 55 5
Section ! 772773 4
(EDS)
Ascii string

10/15/98

Version 1.0

91

GRIB USERM ANUAL

This page intentionally left blank

92

Version 1.0

10/15/98

GRIB USERM ANUAL

APPENDIX B. MEL GRIB SOFTWARE LIBRARY

INVENTORY

NOTE: This listing is not meant for configuration control. Some distributed files may
have different dates.

Main directory

| Name Date Time Size (KB) |
Clean Feb 23 10:04 2159
DISCLAIMER Sep 9 1997 3009
Install Dec 16 12:50 3539
README.DOC Dec 16 13:31 3927
VERSION Dec 16 13:28 147
Bin Jun 8 9:19 9
Config Jun 8 9:19 32
config.os Apr 23 9:33 5491
Data Jun 8 9:19 4096
Doc Jun 8 9:19 75
Include Jun 8 9:19 147
Lib Jun 8 9:19 9
Libsrc Jun 8 9:31 4096
Run Jun 8 9:19 9
Src Jun 8 9:19 84
Tables Jun 8 9:19 4096
Bin
| Name Date Time Size (KB) |
Config
| Name Date Time Size (KB) |
encoder.config Feb 12 11:38 759
data
| Name Date Time Size (KB) |
058.223.dwpt_dprs.isbr_Ivl.1000.0.1997081200.012 Aug 27 1997 11910
058.223.geop_ht.isbr_Ivl.100.0.1997081200.000 Aug 27 1997 19794
058.223.geop_ht.isbr_Ivl.100.0.1997081200.012 Aug 27 1997 19794
GRIB.testl Apr 23 9:25 15309
GRIB.test2 Apr 23 9:31 16863
GRIB0797.tar Jul 21 1997 30720
IEEE.input Jul 21 1997 12444
encoder_ex2.geom Feb 12 10:09 810
encoder_ex2.info Feb 12 10:04 691
encoder_ex3.list Aug 26 1997 148
getgribieee.list Aug 27 1997 165
ieee.pres.msl.2.0.1997070100.000 Aug 13 1997 12444
ieee.pres.msl.2.0.1997070100.012 Aug 13 1997 12444
ieee.wnd_ucmp.ht_sfc.10.0.1997070100.000 Aug 13 1997 12444
ieee.wnd_ucmp.ht_sfc.10.0.1997070100.012 Aug 13 1997 12444
ptmugu_61x51.geom Feb 12 10:10 826
10/15/98 Version 1.0 93

GRIB USERM ANUAL

doc

| Name Date Time Size (KB) |
Interface.doc Apr 23 14:23 27021
Method.all Apr 23 14:21 125558
run_examples.doc Aug 29 1997 3214

include

| Name Date Time Size (KB) |
dprints.h Feb 20 9:43 3299
grads.h Apr 16 10:41 5469
grib.h Apr 23 9:14 21238
grib_lookup.h Dec 10 13:50 6266
gribfuncs.h Feb 22 16:44 4117
gsv5d.h Nov 20 1997 2993
input.h Jun 19 1997 3717
isdb.h Dec 22 9:24 5447

lib

| Name Date Time Size (KB) |

libsrc

| Name Date Time Size (KB) |
FTP_getfile.c Apr 15 13:27 4958
Makefile Feb 23 8:48 3144
apply_bitmap.c Apr 20 11:00 6380
changes.log Apr 23 9:58 6850
display_gribhdr.c Jun 25 1997 5132
gbyte.c Sep 16 1997 14124
grib_dec.c Feb 22 15:46 7850
grib_enc.c Feb 20 9:40 19620
grib_seek.c Dec 15 8:29 18915
gribgetbds.c Feb 18 18:51 10416
gribgetbms.c Jun 25 1997 4966
gribgetgds.c Feb 18 21:00 22326
gribgetpds.c Apr 23 9:16 9110
gribhdr2file.c Dec 15 9:17 5263
gribputbds.c Nov 4 1997 7433
gribputgds.c Feb 26 10:15 40929
gribputpds.c Apr 23 9:18 16804
hdr_print.c Jun 25 1997 1617
init_dec_struct.c Apr 23 8:54 2183
init_enc_struct.c Jun 25 1997 1612
init_gribhdr.c Nov 4 1997 8458
init_struct.c Aug 27 1997 1167
Id_dec_lookup.c Feb 18 19:39 26458
Id_enc_input.c Feb 10 9:00 21582
Id_enc_lookup.c Aug 27 1997 17126
Id_grib_origctrs.c Apr 15 11:12 4730
make_default_grbfn.c Aug 27 1997 2353
make_grib_log.c Apr 23 9:21 29960
map_Ivl.c Dec 15 8:53 3403
map_parm.c Dec 15 9:03 4399
pack_spatial.c Nov 13 1997 17537
prt_badmsg.c Feb 24 10:07 9514
prt_inp_struct.c Apr 23 9:11 14870
upd_child_errmsg.c Jun 25 1997 1652

94 Version 1.0 10/15/98

GRIB USERM ANUAL

run

| Name Date Time Size (KB) |
src
| Name Date Time Size (KB) |
decoder_ex Jun 8 9:31 47
encoder_ex Jun 8 9:31 92
Getgribieee Jun 8 9:31 68
Gribsimp Jun 8 9:31 4096
decoder ex
| Name Date Time Size (KB) |
Makefile Feb 23 8:58 920
decoder_ex.c Apr 23 11:22 7119
encoder_ex
| Name Date Time Size (KB) |
Makefile Feb 23 9:21 1720
encoder_exl.c Jan 22 10:22 8346
encoder_ex2.c Dec 23 14:05 5824
encoder_ex3.c Feb 23 11:19 13202
getgribieee
| Name Date Time Size (KB) |
Makefile Feb 23 10:20 912
changes.log Feb 23 8:41 81
getgribieee.c Feb 26 8:21 7023
gribsimp
Name Date Time Size (KB) |
Makefile Apr 16 11:17 2653
changes.log Apr 23 9:59 1162
e_h_time.c Nov 13 1997 2677
grad_boundary_box.c Nov 13 1997 16398
gribsimp.c Apr 16 9:38 62105
h_e time.c Jul 22 1997 2526
Id_grad_msg.c Aug 27 1997 33003
Id_v5d_msg.c Dec 17 8:36 29100
make_grad_files.c Apr 9 9:50 36465
make_v5d_file.c Apr 14 12:14 33290
reg_trfm.c Jul 22 1997 31809
10/15/98 Version 1.0 95

GRIB USERM ANUAL

This page intentionally left blank

96

Version 1.0

10/15/98

GRIB USERM ANUAL

APPENDIX C. GRIB EXTENSIONS

The GRIB standard was selected for use by the MEL project because of its relatively
widespread international acceptance, its portability across all platforms, and its efficient and
flexible packing scheme for gridded data. However, there are a few shortcomings of the
GRIB format that can be addressed through the addition of locally defined extensions to the
PDS of each GRIB message. The GRIB standard allows the PDS to be of variable length
for just this purpose. As long as the required octets of the PDS are used in the standard way,
a GRIB message with extensions to the PDS is still considered fully compliant with the

WMO GRIB standard.

The WMO GRIB standard defines 28 octets for the default, and required PDS section of a
GRIB message. Octets 29 - 40 are currently undefined, but still reserved by the WMO for
future use, and need only be present if local octet definitions are made beyond octet 40.
The MEL GRIB extensions occupy octets 41 - 46 of the PDS section, and are described in
detail below.

Octet 41: Extension Flag

This parameter, along with the absolute length of the Product Defintion Section (PDS), is
used to determine if the message being decoded contains recognized extensions. The Flag
is checked against the value of the constant defined in grib.h, “EXTENSION_FLAG”,

which is currently set to 99. The value of EXTENSION_FLAG should not be modified
without first consulting the developers of this software.

The current check for the GRIB extensions defined in this software library is:

(PDS.octet41 == EXTENSION_FLAG) && (PDS.length == 46)

Octet 42: Seconds of the Reference Time

The PDS defines the year, month, day, hour, and minute of the reference time of the data set

in octets 13 through 17. For some data sets, the reference time is specified to the precision
of seconds, and so this extension allows this specification.

10/15/98 Version 1.0 97

GRIB USERM ANUAL

Octets 43-44: Tracking ID

This 2 byte parameter is intended to provide a unique integer to define the data set being
delivered. The idea is to allow users of the message to reference a unique ID should they
need to contact the originating center concerning any problems with the data set. This
unique ID would allow the originating center to efficiently determine the exact data set
delivered. This feature is currently not used by the MEL Resource Site Software.

Octet 45: Parameter Sub-ID

Perhaps the biggest limitation of the GRIB standard is that it only allows for 255 unique
parameter definitions, of which 128 are reserved for use by the WMO. This is specified in
octet 9 of the PDS, and is referred to as the Parameter ID. The Parameter Sub-I1D allows for
the definition of an additional 1275 local parameters. This is accomplished through the
definition of five parameter sub-tables, each containing up to 255 definitions (code 000 is
reserved and can not be used). The sub-tables are labeled A through E, and are referenced
in the GRIB message by setting the parameter ID (octet 9) to 250 through 254, (i.e., 250
points to sub-table A, 251 points to sub-table B, etc.). The parameter contained in the
message is then defined by setting the parameter sub-ID (octet 45) to the sub-table entry for
that parameter. As an example, consider the parameter “white cap probability” which is
defined as parameter 78 of sub-table A at the NRL, Monterey MEL Resource Site. In the
extended PDS section, this parameter would be represented with octet 9 set to 250 (pointer
to sub-table A), and octet 45 set to 78.

Note that if a decoder that does not have these extensions implemented attempts to decode a
message with a parameter from a sub-table, it will only return the parameter ID and hence

will not be able to determine the parameter name. For this reason, sub-table parameter
definitions are used sparingly. However, any decoder can still decode a message with a
sub-table parameter, and obtain the data, model, geometry, and level information. It is only
the parameter name that is indecipherable.

Octet 46: Local Table Sub-ID

This parameter allows encoding centers to maintain version control on their locally defined
encoding tables. The WMO specifies the version of their standard tables in octet 4 of the
PDS, and states that values 128-254 are reserved for local use. However, the problem with
this approach is that since the local and WMO table versions are combined, there is no way
for a decoder to determine the WMO table version if a local table version is included.
Therefore, it was decided to split the version information and provide a separate octet for
local table version.

o8 Version 1.0 10/15/98

GRIB USERM ANUAL

APPENDIX D. RUNNING GRIB EXAMPLES

D.1 RUNNING 'DECODER_EX'

It is recommended that this example be run in dire@Gfi¥IB_ENV/run . From theUNIX
prompt, type:

decoder_ex1

Input file:

$GRIB_ENV/data/GRIB0797.tar — file holding the GRIB messages to decode.
Output file:

Jdecoder_ex.output — a large text file displaying every datapoint value of

each decoded message.

D.2 RUNNING 'GETGRIBIEEE'

Run this example in directo8GRIB_ENV/run . From theUNIX prompt, type:

$GRIB_ENV/bin/getgribieee $GRIB_ENV/data/getgribieee.list

Input file:
$GRIB_ENV/data/getgribieee.list
getgribieee.list contains a list of input GRIB files to process

Here, the list file contains:

$GRIB_ENV/data/058.223.geop_ht.isbr_Ivl.100.0.1997081200.000
$GRIB_ENV/data/058.223.geop_ht.isbr_Ivl.100.0.1997081200.012
$GRIB_ENV/data/058.223.dwpt_dprs.isbr_Ivl.1000.0.1997081200.012

Output files:

Three files hold IEEE data of input GRIB files

058.223.geop_ht.isbr_Iv1.100.0.1997081200.000.IEEE
058.223.geop_ht.isbr_Iv1.100.0.1997081200.012.IEEE
058.223.dwpt_dprs.isbr_Ivl.1000.0.1997081200.012.IEEE

10/15/98 Version 1.0 99

GRIB USERM ANUAL

NOTE: These IEEE fileslo notcontain the 4-byte Header and Trailer, just the
floating-point data. They may also be compared with the binary files created by
gribsimp option-o using the same input GRIB files.

D.3 RUNNING 'ENCODER_EXT1'

Run this example in directo8GRIB_ENV/run . At theUNIX prompt, type:

encoder_ex1

Input file:
$GRIB_ENV/data/IEEE.input — the float data used for encoding

Output file:
075_237_1997070100012_0011_105.00002.0.grb — the encoded GRIB
message

D.4 RUNNING 'ENCODER_EX2'

Run this example in directo8GRIB_ENV/run . From theUNIX prompt, type:

encoder_ex2

Input files:
$GRIB_ENV/config/lencoder.config — holds the Encoder configuration information
$GRIB_ENV/data/encoder_ex2.geom — holds the Geometry information
$GRIB_ENV/data/encoder_ex2.info — holds information on message to encode
$GRIB_ENV/data/IEEE.input — holds the float data used for encoding
Output file:
075_237_1997070100012_0011_105.00002.1.grb — the encoded GRIB
message

100 Version 1.0 10/15/98

GRIB USERM ANUAL

D.5 RUNNING 'ENCODER_EXS3'

This program expects three command line arguments: Model type, Geometry name, and
the List filename, respectively.

encoder_ex3 NORAPS2 ptmugu_61x51 $GRIB_ENV/data/encoder_ex3.list
Input files:

$GRIB_ENV/config/encoder.config — file holding the configuration information
for the encoder.

$GRIB_ENV/data/$GEOM'.geom — Geometry information file. Since the command
line specifies geometmytmugu_61x51 , the program will automatically look for file
$GRIB_ENV/data/ptmugu_61x51.geom

$GRIB_ENV/data/encoder_ex3.list — file contains the names of the input IEEE
files to be used for encoding. Each entry appears on a single line ambtoaptain a
path. The program automatically adds the $&RIB_ENV/data/ in front of each file
name.

Here is the listing 0$GRIB_ENV/data/encoder_ex3.list

ieee.pres.msl.2.0.1997070100.000
ieee.pres.msl.2.0.1997070100.012
ieee.wnd_ucmp.ht_sfc.10.0.1997070100.000
ieee.wnd_ucmp.ht_sfc.10.0.1997070100.012

IEEE input files

These files hold the IEEE data used to encode each message. The filename format is
"ieee."parmname.lvitype.Ivil.lvi2.yyyymmddhh.tau , as listed in the List file.
All listed files must reside in directo8GRIB_ENV/data/.

Output files:

From the four input "ieee." entries in the Listing files, four GRIB messages are encoded and
stored in separate files =

016_054 1997070100000 0001_102.00002.3.grb

016_054 1997070100000 0033_105.00010.3.grb

016 054 1997070100012_0001_102.00002.3.grb

016_054 1997070100012 0033_105.00010.3.grb

10/15/98 Version 1.0 101

GRIB USERM ANUAL

This page intentionally left blank

102 Version 1.0 10/15/98

GRIB USERM ANUAL

APPENDIX E. GRIB SOFTWARE CONVENTIONS

E.1 DEFAULT FILENAME FOR ENCODED GRIB MESSAGES

The MEL GRIB Software defines a default naming convention as follows:
MMM.GGG.yyyymmddhhtau_PPPX.lvi1.c.grb

Where:

MMM : 3-digit model ID
GGG : 3-digit geom ID

yyyy . 4-digit year of reference date/time
mm : 2-digit month of reference date/time
dd . 2-digit day of reference date/time
hh : 2-digit hour of reference date/time
tau : 3-digit forecast

PPPX :4-digit Parameter Index computed from Parmid & ParmSubid
Lid : 3-digit Level ID

Ivi1 : 5-digit Level
.C : 1-digit Case ID
.grb : 4-char string, as is

E.2 THE IEEE FILES

Throughout this document, many references to IEEE files have been made. In this context,
these are 32-bit IEEE unformatted binary files that contain just the floating point data of a
GRIB message. They DO NOT contain the 4-byte Header and Tail as in the FORTRAN
IEEE files.

For a GRIB message with Rows by Cols dimension, an IEEE file of size (Rows * Cols *
size of Float) bytes will be generated. Inthe GRIB library, the progrgmasibieee
and gribsimp ' can create these IEEE files.

The IEEE files generated by the MEL GRIB Software Library can be easily read by any C
or FORTRAN program. Some simple examples are shown below.

The IEEE files can be read into a C program by simply opening the files in “binary read”
(rb) mode and using thfeead function to access the data. For example:

10/15/98 Version 1.0 103

GRIB USERM ANUAL

void main() {
FILE *f1;
float *fbuff;
int rows, cols;

rows = 61; cols = 51; /* depends upon the Geometry */
f1 = (FILE *)fopen("IEEE.input", "rb");

fbuff = (float *)malloc(sizeof(float) * rows * cols);

if (fread ((void*)fbuff, sizeof(float), rows*cols, f1)

I= rows*cols)

{ /* error handling */ }

/* data has been loaded in to float data array fbuff[0] through
fbuff[(rows*cols) -1]

*/

fclose(f1);

free (fbuff);

}

Using FORTRAN-77, open the IEEE files as 'Unformatted' and 'Direct’ access. Then read
in one record at a time where the record lengt#dl) depends upon the system. Here,
RECLIs set to 1 for SGI IRIX64 system (SunOS requiRe€Lto be 4). Consult your
FORTRAN compiler’s reference manual for more information on direct access reads.

PROGRAM fr7sample

real*4 fouff(61 * 51)
character*10 IEEEfn/IEEE.input/

C Open the Input file, MODE: Unformatted, DIRECT access:
C Note: RECL value is 1 for IRIX64, 4 for SunOS
open (unit=2, file=IEEEfn, status='old',

+ form="unformatted', access='direct’, RECL=1)

C Read in 61*51 (or 3111) "real*4" elements, one at a
time

do 150i=1,3111

read (2, REC=i) fbuff(i)

150 enddo
close (2)
C Data has been loaded into float array now

E.3 DECODED IEEE FILE NAMES (FROM GRIBSIMP)

The-o flag instructgyribsimp to generate a 32-bit IEEE unformatted binary data file for
each message decoded. These output files contain the data only, organized as specified in
the Grid Definition Section of the message. There is no 4-byte header or trailer like those
used in FORTRAN IEEE files. The file naming convention used for decoded files is:

104 Version 1.0 10/15/98

GRIB USERM ANUAL

FFyymmddhhtau.PID.GID.LID.level
Where:

FF :2-characters indicating a Flat File (IEEE). The second character may be changed
to one of A/B/C/D/E to indicate the use of a sub-table identifier for this parameter.

yy : 2-digit year of reference date/time

mm : 2-digit month of reference date/time

dd : 2-digit day of reference date/time

hh : 2-digit hour of reference date/time

tau . 3-digit forecast period relative to the reference date/time

PID : 3-digit GRIB parameter code

GID : 3-digit GRIB grid definition code

LID : 3-digit GRIB level type code

level :5-digit scaled integer of level 1 value

Example:FF97070100012.002.237.105.00010
This file contains the data from a message that is the 12-hr forecast field from a model run

started on July 1, 1997 at 00Z. The message is for parameter 002 on level type 105 and
Height of 00010 for grid 237.

E.4 DEFAULT DECODER TABLE FILE NAME CONVENTIONS

The following is the default decoder table file name useglifisimp

gEtab_CEN.{SUB_CEN} X.Y

Where:

E : GRIB edition number (currently 1)

CEN . Originating Center ID

SUB_CEN . Originating Center SUB-ID (optional)

X : WMO GRIB table version number (currently 2)
Y . Local GRIB table version number

Example: gltab 58 2.1

This file contains the Decoder Tables for Center 58 using GRIB Edition 1 with version 2 of
the WMO Code Tables, and version 1 of the locally defined tables at Center 58.

10/15/98 Version 1.0 105

GRIB USERM ANUAL

This page intentionally left blank

106 Version 1.0 10/15/98

GRIB USERM ANUAL

APPENDIX F. MEL GRIB SOFTWARE LIBRARY
ERROR MESSAGES

The following are the MEL GRIB Software Library error messages that may be returned to the
user:

expand_gribhdr: either GRIB_HDR or Entire_msg is Null

expand_gribhdr: failed to create new array ((newsize) bytes)

FTP_getffile: failed to open '(file_name)' for reading

FTP_getfile: Fail to read 2 args from '(file_name)'

FTP_getfile: failed to build FTP script

FTP_getfile: system call to ftp failed

FTP_getfile: '(file_name)' not avail on '(host_name)' in '(path_name)’'
apply_bitmap: No bits set in bitmap. No data retrieved!!

apply_bitmap: Error mallocing (# of bytes) bytes

apply_bitmap: accessing more than (total bits set) elements in Grib_data[]
grib_dec: no 'GRIB' at beg. of this msg

grib_dec: no '7777" at end of this msg

grib_dec: not Grib Edition 1

grib_dec: unknown usData_type=(usData_type)

grib_enc: expecting non-null GRIB_HDR struct

grib_enc: failed to make storage for Internal Structs

grib_enc: <Create-All mode> No DataArray avail to encode

grib_enc: error Expanding Array to include Sect5 ((message_length) byte)
grib_enc: GribHdr Length/Ptr to sections are not consistent

grib_enc: <Create Missing Sect mode> No DataArray avail to encode Bds
grib_seek: expecting non-NULL Grib Hdr;

grib_seek: Cannot open input file '(Infile)'

grib_seek '(InFile)": Got fseek error to pos='(pos)'

grib_seek '(InFile)": skip last '(nread)' bytes, too few for a Msg

grib_seek '(InFile): No Grib msg found at offset= "(offset)’; check Index File
grib_seek '(InFile): FSEEK error to pos+bytenum='(pos+bytenum)'
grib_seek '(InFile)": failed to Expand entire msg to '(IMessageSize)' bytes
grib_seek '(InFile)": failed to read EntireMsg (sz='(IMessageSize)")

grib_seek '(InFile)": corrupt PDS len='(pds_len)', Totlen='(msg_length)', drop
msg;

grib_seek '(InFile)": corrupt GDS len='(gds_len)', Totlen='(msg_length)', drop
msg;

grib_seek '(InFile)": corrupt BMS len="'(bms_len)', Totlen='(msg_length)’, drop
msg;

grib_seek '(InFile)": corrupt BDS len='(bds_len)', Totlen="(msg_length)', drop
msg;

grib_seek '(InFile): no 7777 found for msg at '(offset)’, check indexfile

grib_seek '(InFile): No Grib Msg found at IndexFile's offset = '(offset)’;
Check Index File

gribgetbds: unrecognized packing algorithm

10/15/98 Version 1.0 107

GRIB USERM ANUAL

gribgetbds: BMS present, #datapts calculated '(num_calc)' not same as BMS's set
bits '(ulbits_set)'

gribgetbds: GDS present, #datapts calculated ‘(num_calc)' not same as BMS's grid
size '(ulGrid_size)'

gribgetbds: failed to malloc Grib_Data
gribgetbms: corrupted BMS, gds_flag set but totbits '(totbits)' = ulgrid_sz
'(UlGrid_size)'

gribgetgds: unknown datatype='(usData_type)'
gribhdr2file: GRIB_HDR message buffer is null, OR msg_length=0
gribhdr2file: Shuffle mode: Zero length encountered, quit
gribhdr2file: Unable to open '(fn)'

gribhdr2file: failed to Fwrite IDS to file

gribhdr2file: failed to Fwrite PDS to file

gribhdr2file: failed to Fwrite GDS to file

gribhdr2file: failed to Fwrite BMS to file

gribhdr2file: failed to Fwrite BDS to file

gribhdr2file: failed to Fwrite EDS to file

gribhdr2file: failed to write GH's entire Msg to file
gribputbds: Grib Header or its Entire_msg is NULL
gribputbds: Float array is Null, cannot proceed;

gribputbds: No FloatData avail and GribHdr has no BDS yet (ptr='(bds_ptr)'
len='(bds_len)"

gribputbds: failed to REALLOC entire msg to '(newsize)' bytes

gribputgds: grib header is null

gribputgds: MALIloced true Grib struct failed

gribputgds: Projection '(prjn_name)' unknown

gribputgds: failed to REALLOC entire msg to '(new_msgsz)' bytes

create_inpLambert: ppvGDS_Proj_Input is null

create_inpPolar: ppvGDS_Proj_Inputis null

create_inpLatlon: ppvGDS_Proj_Input is null

inp2grib_Lambert: the VOID *ppvGDS_Proj_Input block is null

inp2grib_PolarSt: Polar or pProjlnp is null

inp2grib_Latlon: ILatlon_inp || pLatlon is null

gribputpds: failed storage for PDS_GRIB

gribputpds: failed to REALLOC entire msg to '(msg_length+sizeof(PDS_GRIB))' bytes

init_gribhdr: failed to create storage for GRIB_HDR

init_gribhdr: failed to create storage for GRIB_HDR's Msg

Id_dec_lookup: failed to open '(lookup_fn)'

Id_dec_lookup: got EOF/ERROR before PARM TABLE #'(sub)' info (Line '(LineRead)'
in ‘(lookup_fn)")

Id_dec_lookup: got EOF/ERROR before loading LEVEL info (Line '(LineRead)" in
'(lookup_fn)")

Id_dec_lookup: got EOF/ERROR before loading MODEL info Line '(LineRead)' in
'(lookup_fn)’

Id_dec_lookup: got EOF/ERROR before loading GEOM info Line ‘(LineRead)' in
'(lookup_fn)'

Id_enc_config: Failed to open '(config_fn)'

Id_enc_config: failed to extract arg from line: '(line)’

Id_enc_config: got ferror(infile)

Id_enc_config: Failed to load '(config_fn)' (‘(linenum-1)"/'(num_expected)’)

108 Version 1.0 10/15/98

GRIB USERM ANUAL

Id_enc_lookup: failed to open '(lookup_fn)'

Id_enc_lookup: got EOF/ERROR before loading DBs PARM info (‘(lookup_fn)"line
'(LineRead)’)

Id_enc_lookup: got EOF/ERROR before loading LEVEL info (line ‘(LineRead)' in

'(lookup_fn)")

Id_enc_lookup: got EOF/ERROR before loading MODEL info (line '(LineRead)" in

Id_enc_lookup: got EOF/ERROR before loading GEOM info (line '(LineRead)" in

'(lookup_fn)")

'(lookup_fn)")

Id_grib_origctrs: got EOF/ERROR skipping over Header lines in '(fn)’
Id_grib_origctrs: Invalid Ctr_id '(strGribCode)', LINE="(Line)'
make_grib_log: failed to open 'GRIB.log'

map_Ivl: no ‘(Ivl_type)"in db_Ivl_tbl;

map_parm: n
pack_spatial:
pack_spatial:
pack_spatial:
pack_spatial:
pack_spatial:
prt_badmsg:
prt_badmsg:
prt_badmsg:

o '(parm_name)' in db_parm_tbl
invalid pt_cnt = '(pt_cnt)'
invalid bit_cnt = '(bit_cnt)'
Grid contains all NULLS
Calculated bit count OUT OF RANGE!
Malloc failed pBitstream
no 'GRIB' at beg. of this msg. Cannot continue.
Message length too short (IMessagelLen), cannot continue

unknown usData_type (gds.head.usData_type)upd_child_errmsg:

msg avail!

no Error

10/15/98

Version 1.0

109

GRIB USERM ANUAL

This page intentionally left blank

110 Version 1.0 10/15/98

GRIB USERM ANUAL

APPENDIX G. ACRONYMS/ABBREVIATIONS

2-De Two Dimensional

3D Three Dimensional

5D Five Dimensional

ASCIl..ccovviiieiiiiiee, American Standard Code for Information Interchange
BDS...iii Binary Data Section

BMS .. Bitmap Section

BUFR.......cceiieirn Binary Universal Form for Representation of meteorological data
DMSOovievieeiiinnn. Defense Modeling and Simulation Office

[D]0] B IR Department of Defense

DSF..oiiiiiieee, Decimal Scale Factor

(01 (o [P Date Time Group

FTP oo, File Transfer Protocol

GDS..coo o, Grid Definition Section

GrADS.......coevviiii. Grid Analysis and Display System

GRIB ..., Gridded Binary representation of meteorological data
HTTP .o Hypertext Transfer Protocol

10/15/98

Version 1.0 111

GRIB USERM ANUAL

ID e, Identification

IEEE ..., Institute of Electrical and Electronics Engineers

1 level

10 T meter (e.g., 2-meter Dry Bulb temperature)

M&S ..., Modeling and Simulation

MEL ...coooiiiiiiiiiis Master Environmental Library

MSEA.....ccooiiiiiees Modeling and Simulation Executive Agent

MSMP ..., Modeling and Simulation Master Plan

[N] Naval Research Laboratory

01110] V2SS Naval Research Laboratory, Marine Meteorology Division, Monterey, CA
PDS ..o, Product Definition Section

5] €1 [i®on Graphics, Incorporated

tar .o tape archive

URL...ooiiiiiiiiis Universal Resource Locator

USD(A&T) ..ccvvvvrenn. Undersecretary of Defense for Acquisition and Technology
WMO.......oooevvreeen, World Meteorological Organization

112 Version 1.0 10/15/98

GRIB USERM ANUAL

INDEX
AMOSPNEIE ..t iii 94, 108
Binary Definition Section31, 32, 37, 38, 68, 69, 71, IRIX it 13
77,79, 81,107, 108, 111 Lambert conformal grids.................... 16, 20, 21, 108
Bit Map Section9, 31, 32, 37, 38, 45, 68, 69, 77, 78, level definitionsceeeeiiiiiiiiiiii, 2,18,19
80, 82, 88, 107, 108, 111 MEL HOME PAgE....couuiiiiiiiiiieeeieii e 9
bufferccoeeeviiiiiiiiin, 32, 34, 36, 48, 51, 88, 108 Modeling and Simulation i, 111, 112
C 1,5, 12,13, 15, 37, 42, 58, 60, 61, 64, 65, 97, 103, OCEANeuttiiiiiiiiiiiiiaiieeeaaaa e il
104, 105 OUEPUL .ttt 16, 88
ESCIIPLOrS ... 1,15 parameter definitions...........ccccevvvvvnnnnnn. 60, 64, 74, 98
DMSO.. .ttt 319,10, 111 PC USEIS..cceiiiii ettt 11, 12
€-MAlL.eeiiiiiiiiii 10 Product Definition Section15, 31, 32, 35, 37, 38, 58,
environment.................... iii, 5, 12, 13, 18, 19, 21, 32 63, 64, 68, 69, 79, 80, 88, 97, 98, 107, 108, 112
EXECULiVe AQENTS......cceiiiiiiiiiiiiiiee e il SGliiiiiiii 5, 13,104, 112
exXtensionsccccveeeeeennnn. 1,2,13,15,30,82,97,98 SGland SGI IRIX.......cccccvvvnniianannnnn. 5,13, 104, 112
FOrtranccoeevvvieeivieeeiicieee e, 6, 15,113, 104 Software Libraryiii, x, 1, 5, 9, 11, 13, 14, 15, 16, 18,
FTP e 16, 18, 19, 59, 94, 107, 111 31, 58, 59, 81, 84, 89, 93, 103, 107
GrADS.......ccooiieeieeiinn. 17, 20, 24, 25, 26, 27, 29, 111 SPACE....ccuuu et eeeeet ettt iii
grib_seek............. 8,9, 31, 32, 34, 38, 40, 70, 94, 107 spherical conformal grid........... 20, 21, 44, 85, 86, 87
gribsimpl, 12, 13, 14, 17, 18, 19, 20, 21, 22, 23, 24, spherical conformal grids..........ccccoeeveeeenn.. 16, 44, 83
25, 27, 30, 95, 100, 103, 104, 105 spherical harmonic coefficientscccccveeeeeiinnns 16
Grid Description Section38, 45, 68, 82, 84, 107, 108, Spherical Harmonic coefficients.............ccceevveeeis 16

111

(o U1 04T o RS 11

header1, 15, 16, 18, 19, 20, 22, 32, 33, 34, 35, 36, 37,
38, 40, 44, 51, 67, 77, 78, 79, 88, 104, 108

IEEES, 6, 12, 17, 19, 24, 31, 37, 39, 43, 44, 45, 46,
47, 48, 49, 50, 56, 73, 93, 99, 100, 101, 103, 104,
105, 112

IEEE files5, 6, 12, 17, 19, 24, 31, 37, 39, 43, 44, 45,
46, 47, 48, 49, 50, 56, 73, 93, 99, 100, 101, 103,
104, 105, 112

init_gribhdré, 8, 31, 32, 33, 38, 46, 49, 54, 67, 78, 88,

standardl, 2, 14, 15, 17, 18, 22, 35, 42, 58, 65, 66,
78, 82, 83, 84, 97, 98
SuN and SUNOS 5

tar11, 14, 17, 18, 22, 23, 24, 25, 27, 28, 30, 31, 33,
35, 93, 99, 112

(] £ 21 [P RRTR iii
UNIX e, 5, 18, 19, 99, 100
ViSED it 13,17, 21, 30
WMO GRIB standardcccccoeevivnnennnnn. 2,82,97

World Meteorological Organization (WMO) 1, 3, 112

10/15/98

Version 1.0

113

	FOREWORD
	TABLE OF CONTENTS
	1 SCOPE
	2 REFERENCED DOCUMENTS
	3 SOFTWARE SUMMARY
	4 ACCESS TO SOFTWARE
	5 PROCESSING REFERENCE GUIDE
	5.1 Capabilities
	5.2 Conventions
	5.3 Learining GRIB Using GRIBSIMP
	5.4 Decoding Example
	5.5 GRIB Encoding
	5.6 GRIB Table Management
	5.7 Function Definitions
	5.8 Related Processing
	5.9 Data Backup
	5.10 Recovery from Errors, Malfunctions, & Emergencies
	5.11 Messages

	A GRIB MESSAGE STANDARD
	B MEL GRIB SOFTWARE LIBRARY INVENTORY
	C GRIB EXTENSIONS
	D RUNNING GRIB EXAMPLES
	E GRIB SOFTWARE CONVENTIONS
	F MEL GRIB SOFTWARE LIBRARY ERROR MESSAGES
	G ACRONYMS/ABBREVIATIONS
	INDEX

